5. Квадрат со стороной 8 см описан около окружности. Найдите площадь прямоугольного треугольника с острым углом 30°, вписанного в данную окружность. *ОБЯЗАТЕЛЬНО РИСУНОК И ДАНО*
Объяснение: Площадь части круга, заключённой между хордами, можно найти вычитанием площади меньшего сегмента с углом 60° из площади большего сегмента с углом 120° ( см. рисунок в приложении).
* * *
Площадь большего сегмента ОАСЕВ (угол 120°) равна 1/3 площади круга без площади треугольника АОВ (т.к. 120° =трети от полной градусной меры круга): πR²3- R²•sin120°/2 ( Площадь треугольника равна половине произведения его сторон на синус угла между ними)
Площадь меньшего сегмента СОЕ ( угол 60°) равна одной шестой площади круга без площади треугольника СОЕ (т.к. 60°= 1/6 от полной градусной меры круга): πR²/6-R²•sin60°/2
sin120°=sin60° ⇒
πR²/3- R²•sin120°/2 - (πR²/6-R²•sin60°/2)=
=πR*/3-R*•sin60°/2 - πR²/6+R²•sin60°/2=
=πR*/3-πR*/6=
В приложении с рисунком дана формула сегмента круга, можно воспользоваться ею с тем же результатом.
Дано:
<AOB и <COD
<COD внутри <AOB
AO ┴ OD; CO ┴ OB;
<AOB - <COD = 90°
Найти: <AOB и <COD.
Решение
Т.к . AO ┴ OD; CO ┴ OB,
то <AOD = 90; <COB = 90°.
<COD = <AOD - <AOC
<COD = <COB - <DOB
<COD = 90° - <AOC
<COD = 90° - <DOB
Получим
<AOC = 90° - <COD
<DOB = 90° - <COD
Следовательно <AOC = <DOB
2) По условию: <AOB - <COD = 90°
Но если от всего угла <AOB отнять <COD, то останутся два равных угла <AOC и <DOB, значит, это их сумма равна 90°.
<AOC + <DOB = 90° =>
<AOC = <DOB = 90°/2 = 45°
3) <COD = 90° - <DOB
<COD = 90° - 45°=45°
4) <AOB = <AOC + <DOB + <DOB
<AOB = 45° + 45° + 45° = 135°
ответ: <AOB - 135°; <COD =45°.
ответ: πR²/6
Объяснение: Площадь части круга, заключённой между хордами, можно найти вычитанием площади меньшего сегмента с углом 60° из площади большего сегмента с углом 120° ( см. рисунок в приложении).
* * *
Площадь большего сегмента ОАСЕВ (угол 120°) равна 1/3 площади круга без площади треугольника АОВ (т.к. 120° =трети от полной градусной меры круга): πR²3- R²•sin120°/2 ( Площадь треугольника равна половине произведения его сторон на синус угла между ними)
Площадь меньшего сегмента СОЕ ( угол 60°) равна одной шестой площади круга без площади треугольника СОЕ (т.к. 60°= 1/6 от полной градусной меры круга): πR²/6-R²•sin60°/2
sin120°=sin60° ⇒
πR²/3- R²•sin120°/2 - (πR²/6-R²•sin60°/2)=
=πR*/3-R*•sin60°/2 - πR²/6+R²•sin60°/2=
=πR*/3-πR*/6=
В приложении с рисунком дана формула сегмента круга, можно воспользоваться ею с тем же результатом.