на одной стороне угла с вершиной м взяли точки а и в, а на другой-с и d, причём отрезки вс и аd пересекаются в точке о. известно, что во=od и ∠овм=∠odm. докажите, что точка о принадлежит биссектрисе угла м.
Так как PS=RS, то треугольник PSR с основанием PR боковыми сторонами PS и RS является равнобедренным. Следовательно углы пр основании равны, то есть углы ∠SPR и ∠SRP равны. ==> ∠SPR = ∠SRP= 1,5*∠PSR Сумма углов в треугольнике равна 180°. Тогда ∠SPR + ∠SRP + ∠PSR=180° Подставляем в выражение известные нам значения: (1,5*∠PSR)+(1,5*∠PSR)+∠PSR =180° Упрощаем: 4 * ∠PSR= 180° ∠PSR = 45° Находим углы при основании, то есть ∠SPR и ∠SRP, зная что оба угла равны 1,5*∠PSR ∠SPR = ∠SRP= 1,5 * 45°=67,5° Делаем проверку, того что все углы в треугольнике в сумме дают 180° 67,5° + 67,5° + 45°=180° Всё верно. ответ: ∠SPR = 67,5° , ∠SRP=67,5° , ∠PSR = 45°
. пусть один катет х, тогда и другой х, т.к. треугольник не только прямоугольный. но еще и равнобедренный. т.к. сумма острых углов равна 90° в нем.
тогда с=√(х²+х²)=х√2, ⇒х=с/√2=с√2/2;
и с одной стороны, площадь этого треугольника равна х²/2=(с²*2/4)/2=
с²/4, а с другой половине произведения гипотенузы на искомую высоту h. т.е. ch/2
ch/2=с²/4⇒h=c/2.
НО ЕСТЬ БОЛЕЕ КОРОТКИЙ ПУТЬ РЕШЕНИЯ.
.
Как известно, в равнобедренном треугольнике высота, проведенная к основанию, /которым и является гипотенуза / является и медианой. Но если из прямого угла прямоугольного треугольника провести медиану к гипотенузе, то она равна половине гипотенузы.
Следовательно углы пр основании равны, то есть углы ∠SPR и ∠SRP равны. ==> ∠SPR = ∠SRP= 1,5*∠PSR
Сумма углов в треугольнике равна 180°. Тогда ∠SPR + ∠SRP + ∠PSR=180°
Подставляем в выражение известные нам значения:
(1,5*∠PSR)+(1,5*∠PSR)+∠PSR =180°
Упрощаем:
4 * ∠PSR= 180°
∠PSR = 45°
Находим углы при основании, то есть ∠SPR и ∠SRP, зная что оба угла равны 1,5*∠PSR
∠SPR = ∠SRP= 1,5 * 45°=67,5°
Делаем проверку, того что все углы в треугольнике в сумме дают 180°
67,5° + 67,5° + 45°=180°
Всё верно.
ответ: ∠SPR = 67,5° , ∠SRP=67,5° , ∠PSR = 45°
. пусть один катет х, тогда и другой х, т.к. треугольник не только прямоугольный. но еще и равнобедренный. т.к. сумма острых углов равна 90° в нем.
тогда с=√(х²+х²)=х√2, ⇒х=с/√2=с√2/2;
и с одной стороны, площадь этого треугольника равна х²/2=(с²*2/4)/2=
с²/4, а с другой половине произведения гипотенузы на искомую высоту h. т.е. ch/2
ch/2=с²/4⇒h=c/2.
НО ЕСТЬ БОЛЕЕ КОРОТКИЙ ПУТЬ РЕШЕНИЯ.
.
Как известно, в равнобедренном треугольнике высота, проведенная к основанию, /которым и является гипотенуза / является и медианой. Но если из прямого угла прямоугольного треугольника провести медиану к гипотенузе, то она равна половине гипотенузы.
ОТВЕТ с/2