5. Найдите площадь треугольника вершины которого имеют координаты
(-1; 2), (-1; 5), (4; 0),
6.Найдите площадь ромба, сторона которого равна 58, а одна из диагоналей
равна 84.
7.Найдите меньшее основание прямоугольной трапеции, у которой площадь
равна 3150√3, высота равна 30√3, а острый угол равен 30°.
8. Найдите площадь S кругового сектора, если радиус круга равен 21, а угол сектора равен 120°. В ответе запишите S/П
ВК=КД за побудовою
АК=АС за властивістю медіани, отже отримана фігура АВСД ( треба з'єднати усі кінці) є паралелограмом, де АС і ВД-діагоналі паралелограма.
За властивістю паралелограма:
АС^2 + ВД^2=2*(АВ^2 + ВС^2)
13^2 + ВД^2=2*(8^2 + 9^2)
169 + ВД^2=2*(64+81)
169 + ВД^2=2*145
ВД^2=290-169
ВД^2=121
ВД=11см
ВК=КД=5,5см
Відповідь: 5,5 см.
Модуль или длина вектора: |a|=√(x²+y²).
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае:
Вектор АВ(2-1;5-(-2)) или AB(1;7) |AB|=√(1²+7))=5√2.
Вектор ВC(-5-2;4-5) или BC(-7;-1) |BC|=√(7²+(-1)²)=5√2.
Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2.
Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2.
Вектор AD(-6-1);-3-(-2)) или AD(-7;-1) |AD|=√((-7)²+(-1)²))=5√2.
Итак, четырехугольник АВСД параллелограмм (так как его противоположные стороны попарно равны. А поскольку все его
стороны равны, то это или ромб, или квадрат.
Найдем один из углов четырехугольника между сторонами АВ и AD (этого достаточно).
cosα=(Xab*Xad1+Yab*Yad)/[√(Xab²+Yab²)*√(Xad²+Yad²)].
Или cosα=(1*(-7)+7*(-1))/[√(1²+7²)*√((-7)²+(-1)²)]=--14/5√2.
Следовательно, этот угол тупой.А так как в квадрате все углы прямые, то вывод: четырехугольник АВСD - ромб что и требовалось доказать.