1). Построим описанную окружность с центром в т. М Угол ∠АМС - центральный, опирающийся на ту же дугу АС, что и угол ∠АВС. Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4 CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC => => BC = 2MC*cos15°
Рассмотрим сечение образованное высотой конуса, его образующей и радиусом основания. Это прямоугольный треугольник, в котором гипотенуза (образующая) равна 8, а острый угол между радиусом и образующей равен 30 градусов. Тогда высота конуса Н равна половине гипотенузы, т.е 4, а радиус основания равен гипотенуза умножить на косинус 30 градусов, т.е 4 корня из 3. Объем конуса равен трети площади основания на высоту. В основании круг, т.е его площадь равна Пи умножить на радиус в квадрате, т.е 48 Пи. Тогда Подставляем все найденные величины в формулу и получаем: V = 1/3 * 48 Пи * 4 = 64 Пи (кубических единиц). ответ: 64 Пи.
Угол ∠АМС - центральный, опирающийся на ту же дугу АС,
что и угол ∠АВС.
Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4
CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC =>
=> BC = 2MC*cos15°
В ΔМНС: МН = МС*cos30° = MC*√3/2
Тогда:
Объем конуса равен трети площади основания на высоту. В основании круг, т.е его площадь равна Пи умножить на радиус в квадрате, т.е 48 Пи. Тогда Подставляем все найденные величины в формулу и получаем:
V = 1/3 * 48 Пи * 4 = 64 Пи (кубических единиц).
ответ: 64 Пи.