Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. Св-ва касательных: Теорема1: Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Теорема2: Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные треугольники с прямой, проходящие через эту точку и центр окружности. Теорема3: Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.
1) Прямые АС и ВС имеют общие точки с прямой АВ (а при их продлении пересекают АВ) по следствию из аксиомы о параллельных прямых "Если какая -либо прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую." Отсюда следует что если прямая а параллельна АВ , а АС и ВС пересекают АВ то они пересекают и прямую а тоже. 2) не может. Существует теорема "Если прямая, не проходящая ни через одну из вершин треугольника, пересекает одну из его сторон, то она пересекает только одну из двух других сторон." Следовательно , такая прямая может пересекать только 2 стороны треугольника.
Св-ва касательных:
Теорема1: Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Теорема2: Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные треугольники с прямой, проходящие через эту точку и центр окружности.
Теорема3: Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.
2) не может. Существует теорема "Если прямая, не проходящая ни через одну из вершин треугольника, пересекает одну из его сторон, то она пересекает только одну из двух других сторон." Следовательно , такая
прямая может пересекать только 2 стороны треугольника.