Дано:окр.с центром О, R=5см, АВ-хорда, АВ=6, М-середина АВ Найти: ОМ=? Решение: Так как АВ хорда, то точки А и В лежат на окружности. Проведу ОА и ОВ. Они являются радиусами одной окружности, значит ОА=ОВ=5см. Рассмотрю треугольник АОВ, он равнобедренный (так как АО=ОВ по доказанному) с основанием АВ. Проведу ОМ. Так как М - середина АВ, то ОМ - медиана, значит АМ=МВ=1/2АВ=1/2*6=3 см. А в равнобедренном треугольнике медиана, проведенная к основанию, является высотой. ОМ - высота, угол ОМА - прямой. рассмотрю треугольник ОМА, он прямоугольный (так как угол ОМА - прямой). По теореме Пифагора найду ОМ: ОМ²=ОА²-АМ²= 5²-3²=25-9=16 ОМ=4см ответ: ОМ= 4
Основное тригонометрическое тождество:
sin²α + cos²α = 1, откуда
sinα = √(1 - cos²α) или sinα = - √(1 - cos²α)
Знак синуса зависит от координатной четверти, в которой расположен угол.
Но в данной задаче, вероятно, речь идет об остром угле прямоугольного треугольника, поэтому будем рассматривать синус угла только положительный.
tgα = sinα / cosα
1. cosα = 5/13
sinα = √(1 - 25/169) = √(144/169) = 12/13
tgα = 12/13 : 5/13 = 12/5
2. cosα = 15/17
sinα = √(1 - 225/289) = √(64/289) = 8/17
tgα = 8/17 : 15/17 = 8/15
3. cosα = 0,6
sinα = √(1 - 0,36) = √(0,64 ) = 0,8
tgα = 0,8/0,6 = 8/6 = 4/3
Объяснение:
Найти: ОМ=?
Решение:
Так как АВ хорда, то точки А и В лежат на окружности. Проведу ОА и ОВ. Они являются радиусами одной окружности, значит ОА=ОВ=5см. Рассмотрю треугольник АОВ, он равнобедренный (так как АО=ОВ по доказанному) с основанием АВ. Проведу ОМ. Так как М - середина АВ, то ОМ - медиана, значит АМ=МВ=1/2АВ=1/2*6=3 см. А в равнобедренном треугольнике медиана, проведенная к основанию, является высотой. ОМ - высота, угол ОМА - прямой.
рассмотрю треугольник ОМА, он прямоугольный (так как угол ОМА - прямой). По теореме Пифагора найду ОМ:
ОМ²=ОА²-АМ²= 5²-3²=25-9=16
ОМ=4см
ответ: ОМ= 4