В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Лилесим
Лилесим
12.12.2020 05:50 •  Геометрия

5 примеров с приминением теоремы о катете , лежащем против угла в 30 градусов нужно до 14 октября

Показать ответ
Ответ:
dimdasha66
dimdasha66
28.10.2021 04:27

Объяснение:

к сожалению, дана точка касания, и благодаря этому, мы сможем найти радиус окружности:

1) Мы знаем, что отрезки касательных, проведенных из одной точки, равны =>

Обзовем треугольник, треугольником ABC, где AB=BC и точки касания F, L, K: AF=AK=50; FB=BL= 30; LC=CK=50 => боковые стороны AB и BC = 50+30 = 80, а основание равно AC = 50+50=100

БИНГО! - у нас есть р/б треугольник и мы о нём почти всё теперь знаем. Ну разве не прекрасно ли это?

2) Теперь нам захотелось найти радиус

он находится по формуле:

r = \sqrt{ \frac{(p - a)(p - a)(p - b)}{p} }

где

p = \frac{1}{2} (a + a + b) = a + \frac{b}{2}

подставляем:

p=80+100/2= 130

r= √(50*50*30/130) ≈ 24,0192230....

Ну, мы случайно нашли радиус этой самой окружности. Наверное, уж точно больше чем 24,0192230.... она быть не может.

- ахх, хочется плакать

0,0(0 оценок)
Ответ:
samininav1
samininav1
28.10.2021 04:27

рассмотрим два случая.

1. когда точка касания окружности , вписанной в равнобедренный треугольник , делит одну из боковых сторон на отрезки , равные 30 см и 50см , считая от основания. Тогда радиус найдем как площадь треугольника деленная на полупериметр треугольника.

Если провести касательные к одной окружности, из одной точки, то до  точек касания расстояния равны. основание равно 30+30=60/см/, две боковые стороны по 30+50=80/см/, полупериметр равен (2*80+60)/2=80+30=110/см/, площадь равна половине произведения основания на высоту, которую ищем по теореме Пифагора.

√(80²-30²)=√(110*50)=10√55, площадь 10√55*30=300√55, радиус равен 300√55/110≈20.23/см/

2.когда точка касания окружности , вписанной в равнобедренный треугольник , делит одну из боковых сторон на отрезки , равные 30 см и 50см , считая от вершины. Рассуждая аналогично, получим, что

основание равно 50+50=100/см/, две боковые стороны по 30+50=80/см/, полупериметр равен (2*80+2*50)/2=80+50=130/см/,  высоту ищем по теореме Пифагора.

√(80²-50²)=√(130*30)=10√39, площадь 50*10√39=500√39, радиус равен 500√39/130≈24.02/см/

Других случаев не вижу, из этих двух наибольшая возможная величина радиуса окружности равна 24.02см

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота