5) Точка С - середина відрізка АВ. Знайдіть координати точки В, якщо А ( -1;3;-5) i C ( 1; -1; -3). * OB ( -3; -5; -1) О В (-3; 5; -1) OB (3; -5; -1) ОВ (-3; -5; 1) до іть
Треугольник ABC, Медианы AA1, BB1 и CC1 пересекаются в точке O. Если продлить медиану AA1 за точку A1 (середину стороны BC) на расстояние, равное A1O, и полученную точку A2 (A1A2 = A1O) соединить с точками B и C, то фигура BOCA2 - параллелограмм (диагонали его делятся пополам в точке пересечения). Поэтому BA2 = CO. Таким образом, треугольник BOA2 имеет стороны, равные 2/3 от длин медиан (не важно, какая именно медиана равна 3, какая 4, и какая 5). Площадь этого треугольника BOA2 равна площади "египетского" треугольника со сторонами 3,4,5, умноженной на (2/3)^2; то есть Sboa2 = (3*4/2)*(4/9) = 8/3; С другой стороны, площадь этого треугольника равна 1/3 площади треугольника ABC, потому что медианы делят треугольник на шесть треугольников равной площади, а площадь треугольника BOA2 равна площади треугольника BOC - и там и там половина площади параллелограмма BOCA2. Поэтому площадь ABC равна 8.
Треугольник ABC, Медианы AA1, BB1 и CC1 пересекаются в точке O. Если продлить медиану AA1 за точку A1 (середину стороны BC) на расстояние, равное A1O, и полученную точку A2 (A1A2 = A1O) соединить с точками B и C, то фигура BOCA2 - параллелограмм (диагонали его делятся пополам в точке пересечения). Поэтому BA2 = CO. Таким образом, треугольник BOA2 имеет стороны, равные 2/3 от длин медиан (не важно, какая именно медиана равна 3, какая 4, и какая 5). Площадь этого треугольника BOA2 равна площади "египетского" треугольника со сторонами 3,4,5, умноженной на (2/3)^2; то есть Sboa2 = (3*4/2)*(4/9) = 8/3; С другой стороны, площадь этого треугольника равна 1/3 площади треугольника ABC, потому что медианы делят треугольник на шесть треугольников равной площади, а площадь треугольника BOA2 равна площади треугольника BOC - и там и там половина площади параллелограмма BOCA2. Поэтому площадь ABC равна 8.
Таким образом, треугольник BOA2 имеет стороны, равные 2/3 от длин медиан (не важно, какая именно медиана равна 3, какая 4, и какая 5). Площадь этого треугольника BOA2 равна площади "египетского" треугольника со сторонами 3,4,5, умноженной на (2/3)^2; то есть Sboa2 = (3*4/2)*(4/9) = 8/3;
С другой стороны, площадь этого треугольника равна 1/3 площади треугольника ABC, потому что медианы делят треугольник на шесть треугольников равной площади, а площадь треугольника BOA2 равна площади треугольника BOC - и там и там половина площади параллелограмма BOCA2.
Поэтому площадь ABC равна 8.
Таким образом, треугольник BOA2 имеет стороны, равные 2/3 от длин медиан (не важно, какая именно медиана равна 3, какая 4, и какая 5). Площадь этого треугольника BOA2 равна площади "египетского" треугольника со сторонами 3,4,5, умноженной на (2/3)^2; то есть Sboa2 = (3*4/2)*(4/9) = 8/3;
С другой стороны, площадь этого треугольника равна 1/3 площади треугольника ABC, потому что медианы делят треугольник на шесть треугольников равной площади, а площадь треугольника BOA2 равна площади треугольника BOC - и там и там половина площади параллелограмма BOCA2.
Поэтому площадь ABC равна 8.