Из условия: 1) основание - квадрат 2) проекция стороны на основание -прямоугольный треугольник 3) в разрезе пирамиды по углам и вершине тоже треугольник
решение: треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60° проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов ) это и будет ответом - (4/ tg60°) / sin 45°
ответ:Для этого прийдется доказать,что треугольник АВD равен треугольнику АСD
Эти треугольники равны по третьему признаку равенства треугольников-по трём сторонам
АВ=СD,по условию задачи
АС=ВD, по условию задачи
АD-общая сторона
Равенство треугольников доказано,а из этого следует,что все соответствующие углы равны между собой
<В=<С
<ВАD=<CDA
<BDA=<CAD
Рассмотрим треугольник АОD
Основание АD
Углы при основании равны между собой(нами это только что было доказано)
<ОАД(он же <САD)=<ODA(он же ВDA)
А если углы при основании равны,то и боковые стороны равны между собой
АО=ОD
И треугольник называется равнобедренный
Объяснение:
1) основание - квадрат
2) проекция стороны на основание -прямоугольный треугольник
3) в разрезе пирамиды по углам и вершине тоже треугольник
решение:
треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60°
проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов )
это и будет ответом - (4/ tg60°) / sin 45°