Проекция бокового ребра b на плоскость основания - это радиус описанной окружности основания R Высота пирамиды h h = b*sin(β) R = b*cos(β) Площадь основания S₁ - это площадь трёх равнобедренных треугольников с углом при вершине 120° и боковыми сторонами R S₁ = 3*1/2*R²*sin(120°) = 3/2*b²*cos²(β)*√3/2 S₁ = 3√3/4*b²*cos²(β) Объём V V = 1/3*S₁*h = √3/4*b²*cos²(β)*b*sin(β) V = √3/4*b³*cos²(β)*sin(β) Сторона основания a по теореме косинусов из того же самого треугольничка со 120° при вершине a² = 2R² - 2R²*cos(120°) = 3R² a = R√3 = b*cos(β)√3 В равностороннем треугольнике радиусы вписанной r и описанной R окружностей отличаются в два раза, что следует из деления медиан точкой пересечения в отношении 2 к 1 от вершины угла r = R/2 = b*cos(β)/2 Апофема f через высоту и радиус вписанной окружности основания по теореме Пифагора f² = r² + h² = b²*cos²(β)/4 + b²*sin²(β) f = b√(cos²(β)/4 + sin²(β)) И боковая поверхность S₂ S₂ = 3*1/2*a*f = 3/2*b*cos(β)√3*b√(cos²(β)/4 + sin²(β)) S₂ = 3√3/2*b²*cos(β)√(cos²(β)/4 + sin²(β))
Пусть размер зала a*a метров существуют два разных размещения ковров - параллельное и перпендикулярное, при параллельном стороны длиной 10 метров параллельны, при перпендикулярном... Ну, вы сами поняли :) при параллельном площадь перекрытой части ковров S₁ = (a-14)(a-20) = 16 м² (a-14)(a-20) = 16 a² - 34a + 280 = 16 a² - 34a + 264 = 0 a₁ = (34 - √(34²-4*264))/2 = (34-√100)/2 = (34-10)/2 = 24/2 = 12 м Это хорошее решение a₂ = (34+√100)/2 = 44/2 = 22 м А вот это уже плохо - размер зала не даёт коврам перекрыться и по нашей формуле получается площадь прямоугольника между углами ковров. Отбрасываем.
Теперь перпендикулярное размещение. ПЕрекрытие ковров имеет квадратную форму S₂ = (a-17)*(a-17) = 16 (a-17)² = 16 a₃-17 = -4 a₃ = 13 м это хорошо a₄-17 = 4 a₄ = 21 м - снова без перекрытия ковров, отбрасываем. ответ: Размеры зала равны 12х12 или 13х13 метров
Высота пирамиды h
h = b*sin(β)
R = b*cos(β)
Площадь основания S₁ - это площадь трёх равнобедренных треугольников с углом при вершине 120° и боковыми сторонами R
S₁ = 3*1/2*R²*sin(120°) = 3/2*b²*cos²(β)*√3/2
S₁ = 3√3/4*b²*cos²(β)
Объём V
V = 1/3*S₁*h = √3/4*b²*cos²(β)*b*sin(β)
V = √3/4*b³*cos²(β)*sin(β)
Сторона основания a по теореме косинусов из того же самого треугольничка со 120° при вершине
a² = 2R² - 2R²*cos(120°) = 3R²
a = R√3 = b*cos(β)√3
В равностороннем треугольнике радиусы вписанной r и описанной R окружностей отличаются в два раза, что следует из деления медиан точкой пересечения в отношении 2 к 1 от вершины угла
r = R/2 = b*cos(β)/2
Апофема f через высоту и радиус вписанной окружности основания по теореме Пифагора
f² = r² + h² = b²*cos²(β)/4 + b²*sin²(β)
f = b√(cos²(β)/4 + sin²(β))
И боковая поверхность S₂
S₂ = 3*1/2*a*f = 3/2*b*cos(β)√3*b√(cos²(β)/4 + sin²(β))
S₂ = 3√3/2*b²*cos(β)√(cos²(β)/4 + sin²(β))
существуют два разных размещения ковров - параллельное и перпендикулярное, при параллельном стороны длиной 10 метров параллельны, при перпендикулярном... Ну, вы сами поняли :)
при параллельном площадь перекрытой части ковров
S₁ = (a-14)(a-20) = 16 м²
(a-14)(a-20) = 16
a² - 34a + 280 = 16
a² - 34a + 264 = 0
a₁ = (34 - √(34²-4*264))/2 = (34-√100)/2 = (34-10)/2 = 24/2 = 12 м
Это хорошее решение
a₂ = (34+√100)/2 = 44/2 = 22 м
А вот это уже плохо - размер зала не даёт коврам перекрыться и по нашей формуле получается площадь прямоугольника между углами ковров. Отбрасываем.
Теперь перпендикулярное размещение.
ПЕрекрытие ковров имеет квадратную форму
S₂ = (a-17)*(a-17) = 16
(a-17)² = 16
a₃-17 = -4
a₃ = 13 м это хорошо
a₄-17 = 4
a₄ = 21 м - снова без перекрытия ковров, отбрасываем.
ответ:
Размеры зала равны 12х12 или 13х13 метров