5. В квадрат вписана окружность, в которую вписан пра- вильный треугольник с периметром, равным 3 корня из 3 см. Найдите площадь той части квадрата, которая не лежит внутри окружности.
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ускорение свободного падения на любой планете равно:
g = gm/r², где m - масса планеты, r - радиус планеты, а g - гравитационная постоянная. пусть m - масса неизвестной планеты, а r - её радиус. тогда ускорение свободного падения на планете будет равно:
g₁ = gm/r², а на земле оно будет равно:
g₀ = gm/r²
подставим в выражение для земли все данные по условию :
g₀ = g * 40m / (1.5r)²
теперь разделим земное ускорение на ускорение на планете:
g₀ / g₁ = g * 40m / (1.5r)² / gm/r². получили пропорцию:
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ускорение свободного падения на любой планете равно:
g = gm/r², где m - масса планеты, r - радиус планеты, а g - гравитационная постоянная. пусть m - масса неизвестной планеты, а r - её радиус. тогда ускорение свободного падения на планете будет равно:
g₁ = gm/r², а на земле оно будет равно:
g₀ = gm/r²
подставим в выражение для земли все данные по условию :
g₀ = g * 40m / (1.5r)²
теперь разделим земное ускорение на ускорение на планете:
g₀ / g₁ = g * 40m / (1.5r)² / gm/r². получили пропорцию:
g₀ / g₁ = 40 / 2.25
отсюда g₁ = 2.25g₀ / 40 = 22.5 / 40 = 0.6 м/с²