1) Проведем высоты из вершин верхнего основания на нижнее.( см. рисунок) Из прямоугольного треугольника с углом в 30⁰ высота трапеции - катет, лежащий против угла в 30⁰, и потому высота равна половине гипотенузы или √3 Второй катет, находим по теореме Пифагора (2√3)²-(√3)²=12-3=9 Катет равен 3,отмечен на рисунке(?) Два таких катета на нижнем основании равны, значит верхнее основание 16-2·?=16-6=10 ответ. верхнее основание равно 10 см. 2) см. рисунок. Параллелепипед в незавершенном виде, но хорошо видны плоскости основания, и двух боковых граней и три диагонали, сходящиеся в одной вершине. Обозначим линейные размеры параллелепипеда a, b, c По теореме Пифагора: a²+b²=7² b²+c²=5² a²+c²=6² Сложим три уравнения: 2a²+2b²+2c²=49+25+36, тогда а²+b²+c²=55 заменим a²+b²=49, тогда 49+с²=55 ⇒ с²=6, с=√6 заменим b²+c²=25, тогда а²+25=55 ⇒ а²=30, а=√30 заменим а²+с²=36, тогда b²+36=55 ⇒ b²=19, b=√19 ответ. линейные размеры параллелепипеда √30, √19, √6.
Очень просто. Как всегда, обозначим трапецию стандартным АВСД. В точке А угол равен 60 градусов. Опустим из В высоту к основанию в точку, к примеру, К. Так вот, угол АВК равен 30 градусов(АВК-прямоугольный треугольник). Катет, лежащий против угла в 30 градусов равен половине гипотенузы => АК=0,5. Так как трапеция равнобедренная, проделываем ту же самую операцию и со второй стороной. Теперь выходит, что основание состоит из 0,5 + 0,5 + х. Но так как мы знаем длину основания, то легко находим х . х=1,7. Следовательно, ВС=1,7
Из прямоугольного треугольника с углом в 30⁰ высота трапеции - катет, лежащий против угла в 30⁰, и потому высота равна половине гипотенузы или √3
Второй катет, находим по теореме Пифагора
(2√3)²-(√3)²=12-3=9
Катет равен 3,отмечен на рисунке(?) Два таких катета на нижнем основании
равны, значит верхнее основание 16-2·?=16-6=10
ответ. верхнее основание равно 10 см.
2) см. рисунок. Параллелепипед в незавершенном виде, но хорошо видны плоскости основания, и двух боковых граней и три диагонали, сходящиеся в одной вершине.
Обозначим линейные размеры параллелепипеда a, b, c
По теореме Пифагора:
a²+b²=7²
b²+c²=5²
a²+c²=6²
Сложим три уравнения:
2a²+2b²+2c²=49+25+36, тогда
а²+b²+c²=55
заменим a²+b²=49, тогда 49+с²=55 ⇒ с²=6, с=√6
заменим b²+c²=25, тогда а²+25=55 ⇒ а²=30, а=√30
заменим а²+с²=36, тогда b²+36=55 ⇒ b²=19, b=√19
ответ. линейные размеры параллелепипеда √30, √19, √6.