5. В равнобедренной трапеции ABCD сторона ВС равна 4 см, высота CE равна 23, а боковая сторона образует угол 60° с основой AD. Найдите основу AD трапеции.
Решение: Объём воды в сосуде находится по формуле: V=Sосн.*h- где S - площадь основания; h- уровень воды Из первой формулы h=V : Sосн. S=πR² или: h=V/ πR² Если перелить воду в другой сосуд у которого радиус меньше в 2 раза (R/2) уровень воды равен: h=V : π*(R/2)²=V : π* R²/4=4V/ πR² Вычислим во сколько раз увеличится уровень воды при переливании воды в другой сосуд: 4V/ πR² : V/πR²=4V* πR²/πR²*V=4 (раза) Отсюда уровень воды, равный 15см в другом сосуде увеличится в 4 раза, следовательно в другом сосуде он будет: 15см*4=60см
Построим прямую из угла А к углу С. т.к. угол А прямой (90), то прямая АС делит его пополам, => угол САD = 30 (это 180-(60+90)=30). АD является гипотенузой в треугольнике САD. По правилу - против угла 30 лежит катет равный половине гипотенузы. Катет СD = 7, => АD (гипотенуза) =14 см. Построим из угла ACD прямую, перпендикулярную основанию АD в точке Н и получим прямой угол. Угол С = 30. По тому же свойству о угле в 30 градусов получаем, что отрезок НD = 3,5. BC=AD-HD=14-3,5=10,5 ответ: г) 10,5
Объём воды в сосуде находится по формуле:
V=Sосн.*h- где S - площадь основания; h- уровень воды
Из первой формулы h=V : Sосн. S=πR² или: h=V/ πR²
Если перелить воду в другой сосуд у которого радиус меньше в 2 раза (R/2)
уровень воды равен: h=V : π*(R/2)²=V : π* R²/4=4V/ πR²
Вычислим во сколько раз увеличится уровень воды при переливании воды в другой сосуд:
4V/ πR² : V/πR²=4V* πR²/πR²*V=4 (раза)
Отсюда уровень воды, равный 15см в другом сосуде увеличится в 4 раза, следовательно в другом сосуде он будет:
15см*4=60см
ответ: Уровень воды в другом сосуде составит 60см
BC=AD-HD=14-3,5=10,5
ответ: г) 10,5