Трапеция - р\б, иначе вокруг нее нельзя было бы описать окружность, значит боковые стороны трапеции равны.
Углы при верхнем основании не могут быть 45 градусов, ибо тогда это была бы не трапеция.
Проводим две высоты: нижнее основание делится на три отрезка( 3, 11, 3 ), потому что фигура делится на два равных треугольника (Угол и сторона) и параллелограмм.
Таким образом, чтобы найти высоту, выразим ее через тангенс данного нам угла: tg(45) = x / 3 ⇒ x = tg(45) * 3 = 3;
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
Углы при верхнем основании не могут быть 45 градусов, ибо тогда это была бы не трапеция.
Проводим две высоты: нижнее основание делится на три отрезка( 3, 11, 3 ), потому что фигура делится на два равных треугольника (Угол и сторона) и параллелограмм.
Таким образом, чтобы найти высоту, выразим ее через тангенс данного нам угла: tg(45) = x / 3 ⇒ x = tg(45) * 3 = 3;
Найдя высоту, можем посчитать площадь: (11 + 17) / 2 * 3 = 42 см².