объем = V=a⋅b⋅h=10⋅24⋅10=2400см3
Объяснение:
Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.
Длина и ширина нам известны, необходимо вычислить высоту.
Площадь диагонального сечения равна произведению диагонали основания и высоты прямоугольного параллелепипеда.
S(диаг. сеч.)=c⋅h=a2+b2−−−−−−√⋅h=102+242−−−−−−−−√⋅h=676−−−√⋅h=26⋅h.
По условию задачи площадь диагонального сечения прямоугольного параллелепипеда равна 260см2.
26⋅h=260
h=26026=10см
Вычислим объем
V=a⋅b⋅h=10⋅24⋅10=2400см3
Дано: КМРТ - трапеція, КМ⊥КТ, МТ⊥КР, МО=2 см, ОТ=8 см. Знайти МК.
Трикутники, утворені основами трапеції та відрізками її діагоналей, подібні. Тому ΔМОР подібний ΔКОТ, МО/ОТ=МР/КТ=1/4.
Нехай МР=х см, тоді КТ=4х см.
Якщо прямокутна трапеція має перпендикулярні діагоналі, то довжина висоти трапеції дорівнює середньому геометричному довжин її основ.
МК=√(МР*КТ)=√(4х*х)=√(4х²)=2х см.
Розглянемо ΔКМТ - прямокутний, МР=2+8=10 см.
За теоремою Піфагора МТ²=КМ²+КТ²; 100=4х²+16х²; 20х²=100; х²=5; х=√5
КМ=2√5 см.
объем = V=a⋅b⋅h=10⋅24⋅10=2400см3
Объяснение:
Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.
Длина и ширина нам известны, необходимо вычислить высоту.
Площадь диагонального сечения равна произведению диагонали основания и высоты прямоугольного параллелепипеда.
S(диаг. сеч.)=c⋅h=a2+b2−−−−−−√⋅h=102+242−−−−−−−−√⋅h=676−−−√⋅h=26⋅h.
По условию задачи площадь диагонального сечения прямоугольного параллелепипеда равна 260см2.
26⋅h=260
h=26026=10см
Вычислим объем
V=a⋅b⋅h=10⋅24⋅10=2400см3
Дано: КМРТ - трапеція, КМ⊥КТ, МТ⊥КР, МО=2 см, ОТ=8 см. Знайти МК.
Трикутники, утворені основами трапеції та відрізками її діагоналей, подібні. Тому ΔМОР подібний ΔКОТ, МО/ОТ=МР/КТ=1/4.
Нехай МР=х см, тоді КТ=4х см.
Якщо прямокутна трапеція має перпендикулярні діагоналі, то довжина висоти трапеції дорівнює середньому геометричному довжин її основ.
МК=√(МР*КТ)=√(4х*х)=√(4х²)=2х см.
Розглянемо ΔКМТ - прямокутний, МР=2+8=10 см.
За теоремою Піфагора МТ²=КМ²+КТ²; 100=4х²+16х²; 20х²=100; х²=5; х=√5
КМ=2√5 см.