5. Вычисли периметр ∆ АВС, если А(1;4), В(-2;1), С(3;-1). ответ округли до целых
Записывает формулу нахождения
расстояния между точками.
Находит сторону АВ. 1
Находит сторону ВС. 1
Находит сторону АС. 1
Записывает формулу нахождения
периметра треугольника.
Находит периметр треугольника. 1
ответ округляет до целых.
!
образуется 8 углов - по 4 в каждой точке пересечения: 1 - 4 и 5 - 8 смежные и вертикальные. Группы из 4 углов связаны между собой углами 3 и 6, 4 и 5 - накрест лежащие и 3 и 5, 4 и 6 - односторонние.
вертикальные и накрест лежащие равны между собой, а смежные и односторонние в сумме равны 180°.
Так как нам даны разные углы, то это углы смежные или односторонние. Таким образом, можем записать, что градусные меры этих углов относятся как 1:5, то есть в сумме равны 1х+5х=6х =180°. Отсюда х=30°.Пусть <2=x=30°. Тогда <1= 150°.
ответ: <1,<4,<5,<8 =150°, а <2,<3,<6,<7 = 30°
2. В условии явная ошибка. Должно быть: "Докажите, что биссектриса ВN угла СВД (Д лежит на прямой АВ), смежного с углом В треугольника, параллельна АС" , так как точки А,В, и D лежат на одной прямой, а биссектриса BN пересекает эту прямую.
Решение.
Угол А при основании АВ равен 60°, следовательно и <B =60°. Смежный с этим углом <CBD = 180°-60°=120°, а биссектриса BN делит его пополам. Следовательно, <NBD=60° и он равен <A, а это соответственные углы при прямых АС и BN и секущей АD. Значит
прямые АС и BN параллельны, что и требовалось доказать.
3. Треугольники MOS и NOP, MON и POS попарно равны по двум сторонам и углу между ними (равенство сторон дано, а углы - вертикальные).
Из равенства треугольников следует равенство сторон MS и NP,
MN и PS. Если противоположные стороны четырехугольника попарно равны, то этот четырехугольник - параллелограмм и MS||MP, а MN||PS, что и требовалось доказать.
При пересечении параллельных прямых секущей образуется 8 углов двух величин:
соответственные углы
∠1 = ∠5
∠3 = ∠7,
а так как ∠1 = ∠3 как вертикальные, то
∠1 = ∠5 = ∠3 = ∠7 = х
и соответственные углы
∠2 = ∠6
∠4 = ∠8,
а так как ∠2 = ∠4, как вертикальные, то
∠2 = ∠6 = ∠4 = ∠8 = у
Сумма односторонних углов равна 180°, например
∠3 + ∠6 = 180°
Т. е. х + у = 180°.
Углы, о которых идет речь в задаче, не равны. Пусть х - меньший из них, тогда у = х + 30°.
x + x + 30° = 180°
2x = 150°
x = 75°
∠1 = ∠5 = ∠3 = ∠7 = 75°
у = 180° - 75° = 105°
∠2 = ∠6 = ∠4 = ∠8= 105°