В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dpichuzhkina
dpichuzhkina
27.10.2020 21:17 •  Геометрия

5 заданий по геометрии, тема вектор. Задания на фото
1.
2.
3.
4.
5.

Показать ответ
Ответ:
bayawb65
bayawb65
08.04.2021 23:30
Дано: ABCD-ромб, ∠В-150°, k-радиус вписанного круга.

Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30°
диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15°
проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной)
Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15°
(ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)

1)\ sin15= \frac{OH}{AO} \\ \\AO= \frac{OH}{sin15} = \frac{k}{sin15} \\ \\ 2) cos15= \frac{OH}{OB} \\ \\ OB=\frac{OH}{cos15} =\frac{k}{cos15} \\ \\ AB ^{2} =AO ^{2} +OB^{2} =\frac{k ^{2} }{sin ^{2} 15}+\frac{k ^{2} }{cos ^{2} 15}= \frac{k ^{2}cos^215+k^2sin^215 }{sin ^{2} 15*cos ^{2} 15} = \\ \\ = \frac{k^2(cos^215+sin^215)}{
 \frac{1}{4} *4*{sin ^{2} 15*cos ^{2} 15}} = \frac{k^2}{ \frac{1}{4}sin^230 } = \frac{k^2}{ \frac{1}{4}* \frac{1}{4} } =16k^2 \\ \\ AB= \sqrt{16k^2} =4k

Площадь любого многоугольника в который можно вписать в окружность находится по формуле:

S=p*r, где p-полупериметр

p=4*AB/2=4*4k/2=8k

S=8k*k=8k²

ответ: 8k²

Около круга радиуса к описан ромб с углом 150 градусов найдите площадь ромба
0,0(0 оценок)
Ответ:
denasty
denasty
17.03.2021 00:10
Для решения этой задачи нам придется вывести кое-какие формулы для площади треугольника.

1. S=Rr(sin A+sin B+sin C).

В самом деле, S=pr=r(a+b+c)/2=
r(Rsin A+Rsin B+Rsin C) по теореме синусов.

2. S=4Rrcos(A/2)·cos(B/2)·cos(C/2).

Преобразуем: 
sin A+sin B+sin C=2sin(A+B)/2·cos(A-B)/2+sin(180-A-B)=
2sin(A+B)/2·cos(A-B)/2+2sin(A+B)/2·cos(A+B)/2=
2sin(A+B)/2·(cos(A-B)/2+cos(A+B)/2)=
4sin(180-C)/2·cos(A-B+A+B)/4·cos(A-B-A-B)/4=
4cos (C/2)·cos(A/2)·cos(B/2).

По этой формуле мы запишем площадь треугольника ABC.

Переходим к площади треугольника XYZ. Нам понадобится еще одна формула.

3. S_(XYZ)=2R^2sin X·sin Y·sin Z.

Имеем: S=(xyz)/(4R)=(2Rsin X)(2Rsin Y)(2Rsin Z)/(4R) = то, что надо.

Заметим, что R общее для обоих треугольников, и что углы
X=(B+C)/2; Y=(A+C)/2; Z=(A+B)/2⇒

S_(XYZ)=2R^2sin(B+C)/2·sin(A+C)/2·sin(A+B)/2=
2R^2sin(180-A)/2·sin(180-B)/2·sin(180-C)/2=
2R^2cos(A/2)cos(B/2)cos(C/2).

Поэтому S_(ABC)/S_(XYZ)=(4Rr)/(2R^2)=(2r)/R

ответ: 39/50
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота