50
построить прямоугольный параллелепипед mnklm1n1k1l1
используя построенный параллелепипед:
указать прямую, скрещивающуюся с прямой mn;
построить и записать угол между прямой m1l и n1k;
доказать, что m1n1||lk;
доказать, что kk1||(mm1l1);
указать пару параллельных плоскостей.
часть 2
(каждое оценивается 2 )
отрезок ав пересекает некоторую плоскость в точке м. через точки а и в проведены параллельные прямые, которые пересекают плоскость в точках а1 и в1. докажите, что точки а1, в1, м лежат на одной прямой. найдите отрезок ав, если аа1=18 см, вв1= 6 см, ам = 12 см.
построить сечение тетраэдра sabc , проходящее через точки m, n, k (картинка)
часть 3
в параллелепипеде авсда1в1с1д1 точка м – середина ребра а1д1. постройте сечение, проходящее через точку м параллельно прямым вд1 и а1в1
1) S = 1/6
2) S = 1/2
3) S = 5/9
Объяснение:
Площадь треугольника можно вычислить по следующей формуле:
1) Обозначим площадь закрашенного ∆-ка S1 (см. рис.1)
Очевидно, т.к. точки делят стороны "единичного" ∆ка на равные отрезки, а угол у единичного и у малого треугольника общий, то
и площадь S1 равна
А т.к.
2) Пусть площадь закрашенной фигуры (а это - треугольник, см. рис.) равна S1.
Тогда площадь исходного единичного треугольника будет равна:
площадь S1, плюс общая площадь трех незакрашенных треугольников (обозначим их площади S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:
Треугольники 2, 3, 4 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:
Соответственно, искомая площадь составляет
3) Пусть площадь закрашенной фигуры (а это - шестиугольник, см. рис.) равна S1
Тогда площадь исходного единичного треугольника будет равна:
площадь S1, плюс общая площадь трех незакрашенных треугольников (пусть их площади будут S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:
Площади треугольников 2, 3 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:
Но площадь треугольника 4 меньше: у него две стороны втрое меньше чем у исходного единичного, потому его площадь равна:
Следовательно, общая площадь незакрашенных частей равна:
А искомая площадь закрашенной фигуры S1 составляет
18 см
Объяснение:
Дано: ΔАВС - равнобедренный.
ВС = 10 см;
ВН = 8 см - высота
BM || BC
Найти: Р (ΔВМН)
Рассмотрим ΔАВС - равнобедренный.
В равнобедренном треугольнике высота , проведенная к основанию, является медианой.⇒ АН = АС
НМ || ВС (условие)
Признак средней линии треугольника: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей — этот отрезок можно назвать средней линией этого треугольника.⇒ НМ - средняя линия.
⇒ АМ = МВ = 10 : 2 = 5 (см)
Средняя линия треугольника равна половине основания.⇒ НМ = ВС : 2 = 10 : 2 = 5 (см)
Периметр равен сумме длин всех сторон.Р (ΔВМН) = МВ + ВН + МН = 5 +8 +5 = 18 (см)