Нам дана окружность, значит известен ее центр. 1. Проведем прямую через центр О окружности и данную точку М на окружности. 2. Из точки М на прямой ОМ восстановим перпендикуляр к прямой ОМ. Для этого из точки М как из центра проводим дугу радиусом ОМ и в точке пересечения прямой и этой дуги ставим точку N. Из точек О и N радиусом ОN проводим две дуги и точки их пересечения обозначим А и В. Соединим точки пересечения прямой АВ, которая пройдет через точку М, так как ОМ=MN. эта прямая и есть искомая касательная к окружности в точке М, так как <OMA=<OMB=90° по построению, а касательная перпендикулярна радиусу в точке касания.
Отрезков с концами в этих точках (сторон треугольника).Углами (внутренними углами) треугольника называются три угла, каждый из которых образован тремя лучами, выходящими из вершин треугольника и проходящими через две другие вершины.Внешним углом треугольника называется угол, смежный внутреннему углы треугольника.Сумма углов треугольника равна 180°:Внешний угол равен сумме двух внутренних углов, не смежных с ним, и больше любого внутреннего, с ним не смежного:Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон:
1. Проведем прямую через центр О окружности и данную точку М на окружности.
2. Из точки М на прямой ОМ восстановим перпендикуляр к прямой ОМ.
Для этого из точки М как из центра проводим дугу радиусом ОМ и в точке пересечения прямой и этой дуги ставим точку N. Из точек О и N радиусом ОN проводим две дуги и точки их пересечения обозначим
А и В. Соединим точки пересечения прямой АВ, которая пройдет через точку М, так как ОМ=MN. эта прямая и есть искомая касательная к окружности в точке М, так как <OMA=<OMB=90° по построению, а касательная перпендикулярна радиусу в точке касания.