50 ! в правильной четырехугольной пирамиде сторона основания равна 8 см, угол между боковым ребром и плоскостью основания равен 30 градусов. найдите высоту пирамиды, боковое ребро, угол между плоскостью основания и боковой гранью, двугранный угол при боковом ребре, площадь полной поверхности пирамиды. буду
Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.
Объяснение:
Дано: AB = A1B1, CH=C1H1, <CAH=<C1A1Н1. АН, А1Н1 - высоты.
Доказать: △АВС=△А1В1С1.
Док-во:
Рассмотрим △АСН и △А1С1Н1. Они прямоугольные и у них CH=C1H1 - катеты, <CAH=<C1A1Н1 - острые углы. Значит △АСН=△А1С1Н1 по 4 признаку (по катету и острому углу). => АС=А1С1, АН=А1Н1.
Рассмотрим △АВН и △А1В1Н1. Они прямоугольные и у них АН=А1Н1 - катеты, AB = A1B1 - гипотенузы. Значит △АВН=△А1В1Н1 по 2 признаку (по катету и гипотенузе). => ВН=В1Н1.
CH=C1H1, ВН=В1Н1, CB=CH+HB, C1B1=C1H1+H1B1 => CB=C1B1.
Таким образом для треугольников △АВС и △А1В1С1 имеем, что AB = A1B1, АС=А1С1, CB=C1B1, значит △АВС=△А1В1С1 по 3му признаку (по 3м сторонам), чтд.