Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
Даны векторы а(7;0;0) и b(0;0;3).Найдите множество точек М, для каждой из которых выполняется условие ОМ*а=0 и ОМ*b=0, где О-начало координат.
Векторы а(7;0;0) и b(0;0;3) заданы на осях Ox и Oz.
Скалярное произведение векторов равно нулю если они перпендикулярны.
Вектору а перпендикулярны все векторы, лежащие в плоскости yOz.
Вектору b перпендикулярны все векторы, лежащие в плоскости xOy.
ответ: множество точек М, для каждой из которых выполняется условие ОМ*а=0 это плоскость yOz.
Множество точек М, для каждой из которых выполняется условие ОМ*b=0 это плоскость xOy.
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
Даны векторы а(7;0;0) и b(0;0;3).Найдите множество точек М, для каждой из которых выполняется условие ОМ*а=0 и ОМ*b=0, где О-начало координат.
Векторы а(7;0;0) и b(0;0;3) заданы на осях Ox и Oz.
Скалярное произведение векторов равно нулю если они перпендикулярны.
Вектору а перпендикулярны все векторы, лежащие в плоскости yOz.
Вектору b перпендикулярны все векторы, лежащие в плоскости xOy.
ответ: множество точек М, для каждой из которых выполняется условие ОМ*а=0 это плоскость yOz.
Множество точек М, для каждой из которых выполняется условие ОМ*b=0 это плоскость xOy.