52.разделитесь на группы. опишите свои обязанности в семье. используйте кубик. бросайте его, в зависимости от того, какая грань кубика вам выпадает, характеризуйте одну из сторон" обязанностей.запишите свои ответы в таблицу.
2. Рассмотрим прямоугольный треугольник ACD, по теореме об угле в 30° (угол, противолежащий углу в 30° равен половине гипотенузы) CD = AC/2 = 12/2 = 6см;
1. По условию фигура ABCD - прямоугольник, но так как дано, что BC = AB следует, что ABCD - квадрат;
2. P=28см, периметр квадрата равняется сумме всех его сторон, то есть P(ABCD) = 4AB (так как все 4 стороны равны), то есть 28 = 4AB, следовательно AB = 7см. Так как ABCD - квадрат и все его стороны равны: AB = BC = CD = AD = 7 см;
3. S(ABCD) = AB в квадрате = 49 сантиметров квадратных;
ответ: S(ABCD) = 49 сантиметров квадратных.
•Задание 8
1. Исходя из данных выражений составим систему:
AB = 3BC AB-BC = 12
Подставим значение AB из первого выражения:
3BC - BC = 12 2BC = 12 BC = 6см, тогда AB=3BC = 18 сантиметрам;
2. S(ABCD) = AB • BC = 18 • 6 = 108 сантиметров квадратных;
Как известно, высота равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна её средней линии ( полусумме оснований).
Тогда h=(8+10):2=9 см
S=0,5•(8+10)•9=81 см²
Подробнее:
Диагонали равнобедренной трапеции равны. AC=BD
Так как они пересекаются под прямым углом, треугольники ВОС и АОД - равнобедренные прямоугольные, и тогда ВО=OC=ВС•sin45º=4√2 AO=OД=АД•sin45º=5√2, откуда
1. S(ABCD) = BC•CD = 6•3 = 18 квадратных сантиметров;
ответ: S(ABCD) = 18 квадратных сантиметров.
•Задание 6
1. Фигура ABCD - прямоугольник, следовательно все углы равняются 90°. Рассмотрим треугольник ACD - прямоугольный, так как угол ADC = 90°, угол ACD = 60°, следовательно угол CAD = 90° - угол ACD = 30°;
2. Рассмотрим прямоугольный треугольник ACD, по теореме об угле в 30° (угол, противолежащий углу в 30° равен половине гипотенузы) CD = AC/2 = 12/2 = 6см;
3. S(ABCD) = AD•CD = 10•6 = 60 квадратных сантиметров;
ответ: S(ABCD) = 60 квадратных сантиметров.
•Задание 7
1. По условию фигура ABCD - прямоугольник, но так как дано, что BC = AB следует, что ABCD - квадрат;
2. P=28см, периметр квадрата равняется сумме всех его сторон, то есть P(ABCD) = 4AB (так как все 4 стороны равны), то есть 28 = 4AB, следовательно AB = 7см. Так как ABCD - квадрат и все его стороны равны: AB = BC = CD = AD = 7 см;
3. S(ABCD) = AB в квадрате = 49 сантиметров квадратных;
ответ: S(ABCD) = 49 сантиметров квадратных.
•Задание 8
1. Исходя из данных выражений составим систему:
AB = 3BC
AB-BC = 12
Подставим значение AB из первого выражения:
3BC - BC = 12
2BC = 12
BC = 6см, тогда AB=3BC = 18 сантиметрам;
2. S(ABCD) = AB • BC = 18 • 6 = 108 сантиметров квадратных;
ответ: S(ABCD) = 108 сантиметров квадратных.
Как известно, высота равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна её средней линии ( полусумме оснований).
Тогда h=(8+10):2=9 см
S=0,5•(8+10)•9=81 см²
Подробнее:
Диагонали равнобедренной трапеции равны. AC=BD
Так как они пересекаются под прямым углом, треугольники ВОС и АОД - равнобедренные прямоугольные, и тогда ВО=OC=ВС•sin45º=4√2 AO=OД=АД•sin45º=5√2, откуда
АС=ВД=4√2+5√2=9√2
Проведем высоту ВН.
НД=полусумме оснований (свойство равнобедренной трапеции)
. Т.к. угол ВДН=45°, треугольник ВНД- равнобедренный, ВН=НД=9√2*sin 45º=9
S АВСД=произведению полусуммы оснований на высоту.
S АВСД=0,5•(8+10)•9=81 см²