Каждая вершина соединена диагоналями со всеми другими вершинами, кроме двух соседних и, естественно, себя самой. Из одной вершины можно провести n − 3 диагонали; перемножим это на число вершин (n -3 )·n Но так как каждая диагональ посчитана дважды ( по разу для каждого конца), то получившееся число надо разделить на 2. Таким образом, количество диагоналей находят по формуле N=n·(n-3):2, где N - число диагоналей, а n - число вершин многоугольника. Попробуем ответить на вопрос задачи: 25=n*(n-3):2 n²-3n-50=0 Корни этого уравнения - дробные числа. Ясно, что число сторон многоугольника может быть только целым. ответ: Нет, не может.
Из одной вершины можно провести n − 3 диагонали; перемножим это на число вершин (n -3 )·n Но так как каждая диагональ посчитана дважды ( по разу для каждого конца), то получившееся число надо разделить на 2.
Таким образом, количество диагоналей находят по формуле
N=n·(n-3):2, где N - число диагоналей, а n - число вершин многоугольника. Попробуем ответить на вопрос задачи:
25=n*(n-3):2
n²-3n-50=0
Корни этого уравнения - дробные числа. Ясно, что число сторон многоугольника может быть только целым.
ответ: Нет, не может.
Шар описан около пирамиды, значит основание пирамиды вписано в круг - сечение шара, Н - центр основания и центр сечения, НС - радиус сечения.
Радиус окружности, описанной около правильного треугольника:
r = a√3/3, где а - сторона треугольника.
CH = AB√3/3 = 9√3 / 3 = 3√3 см.
Центр шара - точка О - лежит на пересечении высоты пирамиды и серединного перпендикуляра к ее ребру.
SO = OC = R - радиус шара.
OH = SH - SO = 10 - R
ΔOHC: ∠OHC = 90°, по теореме Пифагора
CO² = OH²+ CH²
R² = (10 - R)² + 27
R² = 100 - 20R + R² + 27
20R = 127
R = 6,35 см