АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Определи взаимное расположение данной прямой и плоскости.
1. Прямая AA1 и плоскость (BCD): плоскость (BCD) это грань нижнего основания , которую АА1 пересекает в точке А. Пересекаются.
2. Прямая BC и плоскость (AA1B1): плоскость (АА1В1) это боковая левая грань АА1В1В , которую ВС пересекает в точке В . Пересекаются.
3. Прямая CC1 и плоскость (CDD1):плоскость (CDD1) это боковая правая грань CDD1C1 , в которой СС1 лежит. Принадлежит.
4. Прямая CB1 и плоскость (BB1C1):Аналогично п.4 Принадлежит.
5. Прямая AB1 и плоскость (BCD): плоскость (BCD) это грань нижнего основания , которую ВВ1 пересекает в точке В. Пересекают .