5решить на доске и в тетрадях:
1) все углы выпуклого пятиугольника равны друг другу.найдите величену каждого угла.
2)докажите,что треугольник ,две высоты которого равны , является равнобедренным.
3) четырехугольник авсд вписан в окружность. докажите, что угола+с=в+д
проведём диагональ ас, ттогда треугольники асд и авс равнобедренные т к по условию их боковые стороны равны.т.к угол д=39 градусам то угол сад+асд=180-39=141 градус, тогда угол асд=сад=141: 2=70,5 градусам.
рассмотрим треуг. авс:
т.к угол в равен 3 гр,то вас+вса=180-3=177 градусов,по теореме о сумме углов треуг.
т к треуг равнобедренный, то его углы при основании равны,тогда угол вас=вса=177: 2=88,5 градусов
тогда угол а равен сумме углов вас и сад т.е 88.5 градусов+70.5 градусов=159 градусов
ответ: угол а=159 градусов
1. правильный шестиугольник, состоит из шести равносторонних треугольников.
найдем сторону шестиугольника ab=r=48/6=8м.
рассмотрим δсdo в нем cd=do=0,5a (где а - сторона квадрата) ⇒ a=2cd
по теореме пифагора найдем сd
r²=cd²+do²=2cd² ⇒ r=cd√2⇒ м
2.центр
вписанной в треугольник окружности - точка пересечения биссектрис его углов.
центр описанной окружности - точка пересечения срединных перпендикуляров.
в правильном треугольнике биссектрисы, медианы и срединные перпендикуляры . центры описанной и вписанной окружности также и
лежат в точке пересечения медиан.
r: r=2: 1, считая от вершины (свойство медиан).
радиус r вписанной в правильный треугольник окружности ( значит, и круга) равен 1/3 его высоты.
радиус rописанной вокруг правильного треугольника окружности равен 2/3 его высоты.
⇒r=2r
πr²=16π⇒r=4
r=2•4=8
πr²=π•8²=64π см²
3.длина окрудности равна l = 2πr => r =l/2π= 36π/2π = 18
а) длина дуги на которую опирается вписанный угол 35⁰ равна
l = а r , где а - центральный, опирающегося
на эту же дугу (в радианах),
т.е а = 2*35⁰ = 70⁰
10= π/180 радиан => а = 70*π/180 = 7π/18
l = а r = 7π/18 *18 =7π
б) площадь сектора,ограниченного этой дугой равна s = 0,5а r²
s = 0,5 *
7π/18 *18² = 0,5 * 7π *18 = 63π
ответ: а)7π; б)63π