1) Угол ВАС = углу АСД (накрест лежащие при ВС пар-но АД и секущей АС) Углы АСТ и ТСД равны(по условию) Они по 30 градусов Рассмотрим треугольник СТД. Угол С = 30 градусов, угол Д = 90 градусов А катет, лежащий против угла 30 градусов равен половине гипотенузы СТ = 6*2 = 12 По теореме пифагора СД =корень квадратный из 144-38 =к.к. из 108 = 6 корней из 3 А периметр равен: 18*2 + 6 √3 * 2 =36 + 12√3 Если есть ответы, сверься, потому что то, что Р и Е середины я не использовала, и зачем дана точка О тоже не понятно. Условие точно правильное, потому что у треугольнико АСД не может быть бис-сы, а вот у угла АСД - вполне
В нашем случае образуется 8 углов из которых одна половина равны между собой и вторая половина также равны между собой.
Так ∠1=∠4=∠5=∠8, как накрест лежащие и равны 150*.
А ∠2=∠3=∠6=∠7.
Сумма углов 1 и 2 равен 180*, т.е. получается развернутый угол, а углы смежные. Отсюда найдем ∠2=180*-150*=30*.
б) один из углов на 70* больше другого. обозначим один из углов через х, тогда другой, смежный ему, равен х+70. В сумме они дают 180*.Составим уравнение и найдем х:
х+х+70=180*;
2х+70=180*;
2х=180-70;
2х=110;
х=55* - один из углов (меньший).
55*+70*=125* - больший угол.
Итак, одна половина углов равна 55*, а другая - 125* (смотри предыдущее задание).
Угол ВАС = углу АСД (накрест лежащие при ВС пар-но АД и секущей АС)
Углы АСТ и ТСД равны(по условию)
Они по 30 градусов
Рассмотрим треугольник СТД.
Угол С = 30 градусов, угол Д = 90 градусов
А катет, лежащий против угла 30 градусов равен половине гипотенузы
СТ = 6*2 = 12
По теореме пифагора
СД =корень квадратный из 144-38 =к.к. из 108 = 6 корней из 3
А периметр равен:
18*2 + 6 √3 * 2 =36 + 12√3
Если есть ответы, сверься, потому что то, что Р и Е середины я не использовала, и зачем дана точка О тоже не понятно. Условие точно правильное, потому что у треугольнико АСД не может быть бис-сы, а вот у угла АСД - вполне
ответ: а) 150* и 30*; б) 55* и 125*
Объяснение:
В нашем случае образуется 8 углов из которых одна половина равны между собой и вторая половина также равны между собой.
Так ∠1=∠4=∠5=∠8, как накрест лежащие и равны 150*.
А ∠2=∠3=∠6=∠7.
Сумма углов 1 и 2 равен 180*, т.е. получается развернутый угол, а углы смежные. Отсюда найдем ∠2=180*-150*=30*.
б) один из углов на 70* больше другого. обозначим один из углов через х, тогда другой, смежный ему, равен х+70. В сумме они дают 180*.Составим уравнение и найдем х:
х+х+70=180*;
2х+70=180*;
2х=180-70;
2х=110;
х=55* - один из углов (меньший).
55*+70*=125* - больший угол.
Итак, одна половина углов равна 55*, а другая - 125* (смотри предыдущее задание).
Как-то так... :)) Удачи!