Обозначим треугольник АВС(смотри рисунок). Проведём перпендикуляры KQ и LP .Находим площадь треугольника AMN через площадь треугольника АВС. Аналогично находим площади всех нужных внутренних треугольников выражая их через площадь треугольника АВС. Площади треугольников MKL и NKL относятся также как и площади AMK и AKN, поскольку у них основание LK общее, а отношение высот равно отношению высот треугольников AMK и AKN. У треугольников AKN и ALN общее основание AN. Следовательно отношение их высот KQ и LP будет равно отношению их площадей=8/7. Но прямоугольные треугольники AKQ и ALP подобны, значит также и отношение AK/AL=8/7. ответ AL/LK=7/1.
в смысле даны три вершины? если даны их градусные меры, то по ним одним ничего не построишь, нужны еще и длины сторон. если это все дано, то начерти отрезок, равный какой-нибудь из данных сторон, от ее конца отложи прилежащий к ней данный угол, на получившейся стороне угла отложи еще один отрезок, равный другой стороне и от его конца также отложи прилежащий к нему угол, потом на новой получившейся прямой откладываешь последнюю данную сторону и от нее угол. по идее первый начерченный отрезок должен пересечься с последней построенной прямой, вот и получилась четвертая вершина:) если что-то из вышеперечисленного не дано, то это некорректное условие задачи.
Обозначим треугольник АВС(смотри рисунок). Проведём перпендикуляры KQ и LP .Находим площадь треугольника AMN через площадь треугольника АВС. Аналогично находим площади всех нужных внутренних треугольников выражая их через площадь треугольника АВС. Площади треугольников MKL и NKL относятся также как и площади AMK и AKN, поскольку у них основание LK общее, а отношение высот равно отношению высот треугольников AMK и AKN. У треугольников AKN и ALN общее основание AN. Следовательно отношение их высот KQ и LP будет равно отношению их площадей=8/7. Но прямоугольные треугольники AKQ и ALP подобны, значит также и отношение AK/AL=8/7. ответ AL/LK=7/1.
в смысле даны три вершины? если даны их градусные меры, то по ним одним ничего не построишь, нужны еще и длины сторон. если это все дано, то начерти отрезок, равный какой-нибудь из данных сторон, от ее конца отложи прилежащий к ней данный угол, на получившейся стороне угла отложи еще один отрезок, равный другой стороне и от его конца также отложи прилежащий к нему угол, потом на новой получившейся прямой откладываешь последнюю данную сторону и от нее угол. по идее первый начерченный отрезок должен пересечься с последней построенной прямой, вот и получилась четвертая вершина:) если что-то из вышеперечисленного не дано, то это некорректное условие задачи.