АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
1. Дано: Δ АВС, ∠А=74°,∠ В=36°. Найти: ∠ С.
Решение: Т. к. сумма углов треугольника =180°, ∠ С=180°-∠ А-∠В, следовательно, ∠ С=180-74-36=70°. ответ: 70°
2. Дано: ΔАВС, ∠В=41°, внешний∠ВАД=114°. Найти ∠ВАД, ∠С.
Сумма внешнего и внутреннего углов треугольника составляет 180°, поэтому ∠ВАД=180-114=66°
∠С=180-(66+41)=73°
ответ: 66°, 73°.
3 Дано: Δ АВС - равнобедренный, ∠ С=38°. Найти: ∠ А,∠В.
Решение: ΔАВС - равнобедренный, следовательно ∠ В=∠С=38° (углы при основании). Известно, что сумма углов треугольника=180°, следовательно ∠ А=180-∠ В-∠С=180-38-38=104°.
ответ: 38°, 104°.
4. Дано: Δ АВС - равнобедренный, ∠ А=57°. Найти: ∠ В и ∠С.
Решение: Сумма углов треугольника=180°. Т. к. Δ АВС -равнобедренный, то ∠ В+∠ С=180-57=123°, ∠ В=∠С=123:2=61.5°
ответ: 61.5°, 61.5°.
5. Найдем коэффициент пропорциональности: 4х+5х+6х=180°;
15х=180; х=12.
∠1=12*4=48°; ∠2=12*5=60°; 12*6=72°.
6. Пусть угол при вершине равен 14х, тогда углы при основании равны по 3х градусов. Имеем уравнение: 14х+3х+3х=180.
20х=180; х=9.
∠1=9*14=126°; ∠2=∠3=9*3=27°.
7. Пусть ∠1=х°, тогда ∠2=3х°, ∠3=3х+5°. Составим уравнение: х+3х+3х+5=180; 7х=175; х=25.
∠1=25°; ∠2=25*3=75°, ∠3=75+5=80°.