∠ВАС = ∠ВСА = 30 ° ; ∠АВС = 120° .
Объяснение:
По условию :
Δ АВС - равнобедренный , следовательно:
Боковые стороны равны ⇒ АВ=ВС = 29,4 см
Углы при основании равны :
АС - основание ⇒ ∠BAC (∠BAD) = ∠BCA (∠BCD)
BD =14,7см - высота к основанию АС ⇒ является медианой и биссектрисой :
∠BDA = ∠BDC = 90° ( т.к. BD - высота)
AD = DC = АС/2 (т. к. BD - медиана)
∠ABD = ∠CBD (т. к. BD - биссектриса)
ΔBDA = ΔBDC - прямоугольные треугольники
Решение.
1) ΔBAD
По условию катет BD = 14,7 см , гипотенуза АВ = 29,4 см , следовательно :
BD = 1/2 * AB = 1/2 * 29,4 = 14,7 см
Если катет равен половине гипотенузы, то угол лежащий против этого катета равен 30° ⇒∠DAB (∠ BAC) = 30°
Проверим по определению синуса:
sin A = 14,7/29,4 = 1/2 ⇒ ∠BAC (∠BAD ) = ∠BCA (∠BCD) = 30°
2) ΔАВС :
Сумма углов любого треугольника = 180°
∠АВС = 180° - (∠ВАС + ∠ВСА)
∠АВС = 180 - 2*30 = 120 °
1) дано угол В=30 градусов ВА=4 см
решение
проведем АС перпендикуляр к прямой а угол ВСА=90 градусов
получим прямоугольный треугольник АВС
пусть АС=х тогда по свойству что против угла в 30 градусов лежит катет равный половине гипотинузы х=ВА\2
значит АС= 2 см ответ 2 см
2) дано: треугольник АВС равнобедренный (так как угли при основании равны) ВС=14см
проведем АР
т.к. АВС равнобедренный то АР высота медиана биссектриса
значит ВР=СР=14\2=7см
треугольник арс прямоугольный и равнобедренный т.к. угол рас =180-90-45=45 градусов
значит ар=7см
3) тут не дано ни одной величины
это треугольник прямоугольный т.к. 180-30-60=90
значит катет лежащий против угла в 30 градсов равен половине гипотинузы следовательно ас=х тогда вс=2х
тогда ва^2=4х^2-x^2
ва=х
если провести высоты ар то получим новый прямоугольный треугольник вра в котором ар=(х)\2
∠ВАС = ∠ВСА = 30 ° ; ∠АВС = 120° .
Объяснение:
По условию :
Δ АВС - равнобедренный , следовательно:
Боковые стороны равны ⇒ АВ=ВС = 29,4 см
Углы при основании равны :
АС - основание ⇒ ∠BAC (∠BAD) = ∠BCA (∠BCD)
BD =14,7см - высота к основанию АС ⇒ является медианой и биссектрисой :
∠BDA = ∠BDC = 90° ( т.к. BD - высота)
AD = DC = АС/2 (т. к. BD - медиана)
∠ABD = ∠CBD (т. к. BD - биссектриса)
ΔBDA = ΔBDC - прямоугольные треугольники
Решение.
1) ΔBAD
По условию катет BD = 14,7 см , гипотенуза АВ = 29,4 см , следовательно :
BD = 1/2 * AB = 1/2 * 29,4 = 14,7 см
Если катет равен половине гипотенузы, то угол лежащий против этого катета равен 30° ⇒∠DAB (∠ BAC) = 30°
Проверим по определению синуса:
sin A = 14,7/29,4 = 1/2 ⇒ ∠BAC (∠BAD ) = ∠BCA (∠BCD) = 30°
2) ΔАВС :
Сумма углов любого треугольника = 180°
∠АВС = 180° - (∠ВАС + ∠ВСА)
∠АВС = 180 - 2*30 = 120 °
1) дано угол В=30 градусов ВА=4 см
решение
проведем АС перпендикуляр к прямой а угол ВСА=90 градусов
получим прямоугольный треугольник АВС
пусть АС=х тогда по свойству что против угла в 30 градусов лежит катет равный половине гипотинузы х=ВА\2
значит АС= 2 см ответ 2 см
2) дано: треугольник АВС равнобедренный (так как угли при основании равны) ВС=14см
проведем АР
т.к. АВС равнобедренный то АР высота медиана биссектриса
значит ВР=СР=14\2=7см
треугольник арс прямоугольный и равнобедренный т.к. угол рас =180-90-45=45 градусов
значит ар=7см
3) тут не дано ни одной величины
это треугольник прямоугольный т.к. 180-30-60=90
значит катет лежащий против угла в 30 градсов равен половине гипотинузы следовательно ас=х тогда вс=2х
тогда ва^2=4х^2-x^2
ва=х
если провести высоты ар то получим новый прямоугольный треугольник вра в котором ар=(х)\2
Объяснение: