Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).
12 см
1) Острый угол, составляющий 2/3 прямого угла, равен:
90 · 2/3 = 60°.
2) Второй острый угол прямоугольного треугольника равен:
180 - 90 - 60 = 30°.
3) Меньший катет лежит против меньшего угла, то есть против угла 30°.
Катет, лежащий против угла 30°, равен половине гипотенузы.
Пусть х - меньший катет прямоугольного треугольника, тогда гипотенуза равна 2х. Составим уравнение и найдём х:
х + 2х = 18
3х = 18
х = 18 : 3 = 6 см - это длина меньшего катета.
4) Находим длину гипотенузы:
6 · 2 = 12 см
ответ: 12 см
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).
12 см
Объяснение:
1) Острый угол, составляющий 2/3 прямого угла, равен:
90 · 2/3 = 60°.
2) Второй острый угол прямоугольного треугольника равен:
180 - 90 - 60 = 30°.
3) Меньший катет лежит против меньшего угла, то есть против угла 30°.
Катет, лежащий против угла 30°, равен половине гипотенузы.
Пусть х - меньший катет прямоугольного треугольника, тогда гипотенуза равна 2х. Составим уравнение и найдём х:
х + 2х = 18
3х = 18
х = 18 : 3 = 6 см - это длина меньшего катета.
4) Находим длину гипотенузы:
6 · 2 = 12 см
ответ: 12 см