(6044(6155 10. а) Как из первого числа получить второе? Из второго третье? Запиши равенства. 6488)6377 б) Какие числа надо поставить в пустые Клетки на змее? 6821 в) Запиши последовательность чисел. 13
Площадь описанного круга πR²=49π; R=7 площадь вписанного круга πr²=9π; r=3 Так как ΔABC прямоугольный (a,b - катеты, c - гипотенуза), центр описанного круга совпадает с серединой гипотенузы. c=2R=14
Некоторые задачи можно решать разными Ниже приводится вариант решения этой задачи. Из С проведем прямую, параллельную диагонали BD до пересечения с продолжением AD. Точку пересечения обозначим К. Площадь трапеции равна половине произведения высоты на сумму оснований. Из С опустим высоту СН на АD. S трап ABCD=СН*(BC+AD):2 Рассмотрим треугольник АСК. В нем DK параллельна ВС как продолжение основания трапеции. ВD=CK и параллельна ей по построению. Следовательно, четырехугольник DВСК - параллелограмм и DK=BС=7 см АК=АD+DK=13+7=20 см Площадь треугольника равна половине произведения высоты на основание S Δ АСК=СН*АК:2 Но АК равна сумме оснований трапеции. Следовательно, S трап ABCD=S Δ АСК=СН*АК:2 Площадь треугольника АСК можно найти двумя 1) - по формуле Герона. 2) обратив внимание на отношение сторон треугольника АСК. СК:АС:АК=3:4:5, и это отношение сторон прямоугольного"египетского" треугольника. Треугольник АСК - прямоугольный, ( можете проверить т. Пифагора) и его площадь равна половине произведения катетов: S Δ АСК=СК*АС:2 =16*12:2 S Δ АСК=96 см² Ясно, что, поскольку площадь трапеции равна площади этого треугольника, её площадь также равна 96 см². Можно из интереса найти эту площадь по ф. Герона и получить тот же результат. S трап ABCD= 96 см²
Площадь описанного круга πR²=49π; R=7
площадь вписанного круга πr²=9π; r=3
Так как ΔABC прямоугольный (a,b - катеты, c - гипотенуза), центр описанного круга совпадает с серединой гипотенузы. c=2R=14
1) SΔABC=(a+b+c)*r/2=a*b/2; (a+b+14)*3/2=a*b/2; 3a+3b-a*b+42=0; a*(b-3)=3b+42; a=3*(b+14)/(b-3);
2) a²+b²=c²; a²+b²=14²; 9*(b+14)²/(b-3)²+(b+14)*(b-14)=0;
9*(b+14)²+(b+14)*(b-14)*(b-3)²=0; b+14 != 0;
9*(b+14)+(b-14)*(b-3)²=0;
9b+126+(b-14)(b²-6b+9)=0; 9b+126+(b³-14b²-6b²+84b+9b-126)=0;
9b+b³-14b²-6b²+84b+9b=0; b!=0;
9+b²-14b-6b+84+9=0;
b²-20b+102=0;
Однако последнее уравнение не имеет действительных корней. Нет ли ошибки в условии?
Из С проведем прямую, параллельную диагонали BD до пересечения с продолжением AD.
Точку пересечения обозначим К.
Площадь трапеции равна половине произведения высоты на сумму оснований.
Из С опустим высоту СН на АD.
S трап ABCD=СН*(BC+AD):2
Рассмотрим треугольник АСК. В нем DK параллельна ВС как продолжение основания трапеции.
ВD=CK и параллельна ей по построению.
Следовательно, четырехугольник DВСК - параллелограмм и DK=BС=7 см
АК=АD+DK=13+7=20 см
Площадь треугольника равна половине произведения высоты на основание
S Δ АСК=СН*АК:2
Но АК равна сумме оснований трапеции.
Следовательно,
S трап ABCD=S Δ АСК=СН*АК:2
Площадь треугольника АСК можно найти двумя
1) - по формуле Герона.
2) обратив внимание на отношение сторон треугольника АСК. СК:АС:АК=3:4:5, и это отношение сторон прямоугольного"египетского" треугольника.
Треугольник АСК - прямоугольный, ( можете проверить т. Пифагора) и его площадь равна половине произведения катетов:
S Δ АСК=СК*АС:2 =16*12:2
S Δ АСК=96 см²
Ясно, что, поскольку площадь трапеции равна площади этого треугольника, её площадь также равна 96 см².
Можно из интереса найти эту площадь по ф. Герона и получить тот же результат.
S трап ABCD= 96 см²