Найдите сторону меньшего основания правильной четырёхугольной усечённой пирамиды, если её боковое ребро равно 8 см и наклонено к плоскости основания под углом 45°, а диагональ пирамиды равна 9 см. ---------- Пирамида правильная, следовательно, основания - квадраты и их плоскости параллельны. Сделаем и рассмотрим рисунок. Диагональное сечение пирамиды - равнобедренная трапеция АКЕС, основаниями которой служат диагонали оснований пирамиды. Диагональ КС=9 см, боковые стороны равны 8 см. Углы при большем основании равны 45° Высота КН перпендикулярна основанию и образует с боковой стороной равнобедренный прямоугольный треугольник АКН. КН=АН=АК*sin (45°)=4√2 см Из прямоугольного треугольника КНС по т.Пифагора найдем НС НС²=КС²-КН² Т.Пифагора каждый, изучающий стереометрию, знает, поэтому не буду приводить вычисления. НС=7 см Из Е опустим перпендикуляр ЕР. НС=НР+РС НР=КЕ РС=АН=47-4√2 см КЕ=7-4√2 см КЕ - диагональ меньшего основания. Его сторона КТ=КЕ*sin (45°)= [(7-4√2)*√2]:2=(7√2-8):2 КТ=(7√2-8):2 см
Рассмотрим ΔОАД и ΔОСД: у них по условию <ОДА=<ОДС=90, <ОАД=<ОСД, значит и <АОД=<СОД, сторона ОД - общая. Значит эти трегольники равны по стороне и 2 прилежащим к ней углам. Рассмотрим ΔОАВ и ΔОСВ: у них <АОВ=<СОВ (они смежные к равным углам АОД и СОД), сторона ВО - общая и АО=СО (из равенства ΔОАД и ΔОСД). Значит эти треугольники равны по 2 сторонам и углу между ними. Расстояние от точки до прямой - это перпендикуляр, т.е в Δ ОАВ и ΔОСВ это высоты, оущенные из вершины О, опущенные на равные стороны АВ и ВС соответственно. В равных треугольниках равны и высоты, что и требовалось доказать
----------
Пирамида правильная, следовательно, основания - квадраты и их плоскости параллельны.
Сделаем и рассмотрим рисунок.
Диагональное сечение пирамиды - равнобедренная трапеция АКЕС, основаниями которой служат диагонали оснований пирамиды.
Диагональ КС=9 см, боковые стороны равны 8 см.
Углы при большем основании равны 45°
Высота КН перпендикулярна основанию и образует с боковой стороной равнобедренный прямоугольный треугольник АКН.
КН=АН=АК*sin (45°)=4√2 см
Из прямоугольного треугольника КНС по т.Пифагора найдем НС
НС²=КС²-КН²
Т.Пифагора каждый, изучающий стереометрию, знает, поэтому не буду приводить вычисления.
НС=7 см
Из Е опустим перпендикуляр ЕР.
НС=НР+РС
НР=КЕ
РС=АН=47-4√2 см
КЕ=7-4√2 см
КЕ - диагональ меньшего основания.
Его сторона
КТ=КЕ*sin (45°)= [(7-4√2)*√2]:2=(7√2-8):2
КТ=(7√2-8):2 см
Рассмотрим ΔОАВ и ΔОСВ: у них <АОВ=<СОВ (они смежные к равным углам АОД и СОД), сторона ВО - общая и АО=СО (из равенства ΔОАД и ΔОСД). Значит эти треугольники равны по 2 сторонам и углу между ними.
Расстояние от точки до прямой - это перпендикуляр, т.е в Δ ОАВ и ΔОСВ это высоты, оущенные из вершины О, опущенные на равные стороны АВ и ВС соответственно. В равных треугольниках равны и высоты, что и требовалось доказать