1) радиус вписанной окружности=сторона*корень3/6=10*корень3/6=5*корень3/3, длина окружности=2пи*радиус=2пи*5*корень3/3=10пи*корень3/3, 2)радиус описанной окружности около правильного многоугольника=сторона/(2*sin(180/n)), где n -количество углов, радиус=12/(2*sin(180/6))=12/(2*(1/2))=12, в шестиугольнике радиус описанной = стороне=12, радиус вписанной окружности в квадрат=сторона/2, 12=сторона/2, сторона=12*2=24, площадь квадрата=24*24=576 3) треугольник АВС, уголА=90, АС=3., АВ=4, ВС = корень (АС в квадрате+АВ в квадрате)=корень(9+16)=5, радиус вписанной окружности=(АС+АВ-АС)/2=(3+4-5)/2=1, длина окружности=2пи*радиус=2пи*1=2пи, площадь круга=пи*радиус в квадрате=пи
1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм. Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти. Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника. Дерзайте с вычислениями!
1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм.
Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти.
Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника.
Дерзайте с вычислениями!