В тр-ках ABC и ACD опустим перпендикуляры на сторону AC. Очевидно, они упадудт в одну точку, т. к. тр-ки равнобедренные. Назовем эту точку H. В тр-ке BDH угол BDH - прямой (т. к. BD перпендикулярна плоскости ACD).
Найдем BH: в тр-ке ABC по т-ме Пифагора BH^2+6^2=4*21; BH=4*sqrt(3) //sqrt - это знак корня, т. е. 4 корня из трех.
Найдем AD: в тр-ке ADC по т-ме Пифагора 2*AD^2=12^2; AD=6*sqrt(2). //Не забываем, что AD=AC.
Найдем DH исходя из площади тр-ка ADC: DH*12=AD*AC; DH*12=36*2; DH=6.
В прямоугольном тр-ке BDH (угол BDH - прямой) гипотенуза равна 4*sqrt(3), а катет HD=6. Отсюда угол BHD=arccos(6/(4*sqrt(3))=arccos(sqrt(3)/2)=pi/6=30градусов.
ответ: 30 градусов.
2. Поступаем аналогично 1-й задаче: вначале опускаем перпендикуляры BH и DH на сторону AC. Далее по т-ме Пифагора находим DH:
DH^2=6^2+61; DH=sqrt(97) Далее по т-ме Пифагора находим BH: BH^2=10^2+6^2; BH=2sqrt(34).
4) Медиана делит противоположную сторону пополам ⇒ DС = ВD = 12 (см); ВС= 12+12 = 24 (см) АВ = ВС (по условию) АВ = 24см AB + DC = 24 + 24 = 48 (cм) - сумма двух сторон А дальше не решается, задача написана не до конца.
В тр-ках ABC и ACD опустим перпендикуляры на сторону AC. Очевидно, они упадудт в одну точку, т. к. тр-ки равнобедренные. Назовем эту точку H. В тр-ке BDH угол BDH - прямой (т. к. BD перпендикулярна плоскости ACD).
Найдем BH: в тр-ке ABC по т-ме Пифагора BH^2+6^2=4*21; BH=4*sqrt(3) //sqrt - это знак корня, т. е. 4 корня из трех.
Найдем AD: в тр-ке ADC по т-ме Пифагора 2*AD^2=12^2; AD=6*sqrt(2). //Не забываем, что AD=AC.
Найдем DH исходя из площади тр-ка ADC: DH*12=AD*AC; DH*12=36*2; DH=6.
В прямоугольном тр-ке BDH (угол BDH - прямой) гипотенуза равна 4*sqrt(3), а катет HD=6. Отсюда угол BHD=arccos(6/(4*sqrt(3))=arccos(sqrt(3)/2)=pi/6=30градусов.
ответ: 30 градусов.
2. Поступаем аналогично 1-й задаче: вначале опускаем перпендикуляры BH и DH на сторону AC.
Далее по т-ме Пифагора находим DH:
DH^2=6^2+61; DH=sqrt(97)
Далее по т-ме Пифагора находим BH:
BH^2=10^2+6^2; BH=2sqrt(34).
Отсюда по т-ме косинусов в тр-ке DBH считаем BD:
BD^2=(2sqrt(34)^2+sqrt(97)^2-2*2sqrt(34)*sqrt(97)*cos(60))=
BD^2=136+97-2*sqrt(3298)=233-2sqrt(3298).
Далее можно упростить при желании.
Проверьте на всякий случай арифметику.
Р = 4,8 * 3 = 14,4 (см)
ответ: 14,4 см - периметр Δ.
2) В равнобедренном Δ боковые стороны равны
7,3 + 7,3 = 14,6 (см) - сумма двух боковых сторон
22,3 - 14,6 = 7,7 (см)
ответ: 7,7 см - основание Δ
3) Углы при основании равнобедренного треугольника равны.
⇒ ∠А = ∠С.
Сумма углов треугольника = 180°=
⇒∠А = ∠С = (180° - 74°) : 2 = 106° : 2 = 54°
Биссектриса делит угол пополам,
⇒ ∠ВАD = ∠САD = 54° : 2 = 27°
ответ: ∠САD = 27°
4) Медиана делит противоположную сторону пополам
⇒ DС = ВD = 12 (см);
ВС= 12+12 = 24 (см)
АВ = ВС (по условию)
АВ = 24см
AB + DC = 24 + 24 = 48 (cм) - сумма двух сторон
А дальше не решается, задача написана не до конца.