Объяснение:
Углы 1 и 3, 2 и 4 - смежные, в сумме дают 180°.
Так как угол 1 равен 123°, то
∠3=∠2(как соответственные)=180°-123°=57°.
2) a) Сумма углов ΔАВС=180°.
∠A+∠B+∠C=180°. Следовательно,
∠А=180°-(∠В+∠С)=180°-(35°+84°)=180°-119°=61°.
Если m║AC, то угол ВРЕ равен углу ВАС.
Угол ВРЕ равен 180° - 119°=61°;
угол ВЕР=ВСА=180°-(61°+35°)=180°-96°=84°.
Следовательно, m║AC, что и требовалось доказать.
б) Теорема о внешнем угле треугольника:
Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом:
∠МАВ = ∠В+∠С=35°+84°=119°.
См. скриншот
на фото
Объяснение:
Углы 1 и 3, 2 и 4 - смежные, в сумме дают 180°.
Так как угол 1 равен 123°, то
∠3=∠2(как соответственные)=180°-123°=57°.
2) a) Сумма углов ΔАВС=180°.
∠A+∠B+∠C=180°. Следовательно,
∠А=180°-(∠В+∠С)=180°-(35°+84°)=180°-119°=61°.
Если m║AC, то угол ВРЕ равен углу ВАС.
Угол ВРЕ равен 180° - 119°=61°;
угол ВЕР=ВСА=180°-(61°+35°)=180°-96°=84°.
Следовательно, m║AC, что и требовалось доказать.
б) Теорема о внешнем угле треугольника:
Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом:
∠МАВ = ∠В+∠С=35°+84°=119°.
См. скриншот
на фото
Объяснение: