1) Проекция В₁Д - это отрезок ВД. Величину его можно найти двумя Один из них - из треугольника ВСД по двум сторонам и углу между ними по теореме косинусов: ВД = √(4²+4²-2*4*4*cos 120) =√(16+16-(-16) = √48 =4√3. угол между B1D и плоскостью ABC равен:arc tg (6/(4√3) = frc tg (3 / (2√3)) = arc tg 0,86603 = = 0,713724 радиан = 40,89339°. 2) Угол между B1A и плоскостью BCC1 определяется в треугольнике АВ₁К, где АК - высота основы, В₁К - проекция диагонали АВ₁ на боковую грань. АК = √(4²- (4/2)²) = √(16 - 4) = √12 = 2√3. В₁К = √(6²+(4/2)²) = √(36+4) = √40 = 2√10. Тогда Угол между B1A и плоскостью BCC1 равен: α = arc tg (2√3 / 2√10) = √0.3 = 0,547723 = 0,501093 радиан = 28,71051°.
Величину его можно найти двумя
Один из них - из треугольника ВСД по двум сторонам и углу между ними по теореме косинусов:
ВД = √(4²+4²-2*4*4*cos 120) =√(16+16-(-16) = √48 =4√3.
угол между B1D и плоскостью ABC равен:arc tg (6/(4√3) = frc tg (3 / (2√3)) = arc tg 0,86603 =
= 0,713724 радиан = 40,89339°.
2) Угол между B1A и плоскостью BCC1 определяется в треугольнике АВ₁К, где АК - высота основы, В₁К - проекция диагонали АВ₁ на боковую грань.
АК = √(4²- (4/2)²) = √(16 - 4) = √12 = 2√3.
В₁К = √(6²+(4/2)²) = √(36+4) = √40 = 2√10.
Тогда Угол между B1A и плоскостью BCC1 равен:
α = arc tg (2√3 / 2√10) = √0.3 = 0,547723 = 0,501093 радиан = 28,71051°.
В объяснении.
Объяснение:
1. Сумма внутренних углов выпуклого четырехугольника равна 360 градусов.
Пусть коэффициент пропорциональности равен х.
Тогда х+2х+3х+4х = 360° => х = 36°.
Больший угол равен 4х = 144°.
2. Сумма внутренних углов выпуклого четырехугольника равна 360 градусов.
Пусть коэффициент пропорциональности равен х.
Тогда х+2х+2х+4х = 360° => х = 40°.
Меньший угол равен 4х = 40°.
3. Площадь квадрата равна площади прямоугольника: 4*9 = 36 =>
Сторона квадрата равна √36 = 6 ед.
4. Площадь прямоугольника равна х*(х+2) = 24. Тогда
х² + 2х - 24 = 0. Решаем квадратное уравнение. => x = 6. (второй корень отрицательный)
Тогда большая сторона равна 6 + 2 = 8 ед.
5. Смотри рисунок.
6. Уравнение окружности:
(Х - Хц)² + (Y-Yц)² = R² Тогда
а) Координаты центра: Ц(-5;2) Радиус = 4 ед.
б) Координаты центра: Ц(0;-3) Радиус = 3 ед.