7. Площина а паралельна стороні АВ трикутника AMB та перетинає сторони AM i BM у точ- ках А і В, відповідно. Знайдіть довжину сторони AM, якщо Ав1 = АА, = 2 см, AB = 6 см. ДО ТЬ ДУЖЕ
Пирамидой называется многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников с общей вершиной, называемых боковыми гранями пирамиды. Пирамида называется n-угольной, если ее основанием является n-угольник.
Пирамида называется правильной, если её основание — правильный многоугольник и все боковые ребра равны.
Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.
Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Усечённая пирамида называется правильной, если пирамида, из которой она была получена — правильная.
Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие в
1) CB = AB = 8, AC = 8, <A = <C = 30 <B = 120
2) 400 * sin113 * sin53 / sin14
3) AC =
<A = Arccos( (AC^2 + AB^2 -BC^2)/2AC*AB )
<B = Arccos( (BC^2 + AB^2 -AC^2)/2BC*AB )
Если нужно найти приближенное целочисленное значение нужно подставить и посчитать на калькуляторе
Объяснение:
1) <C = 180-120-30 = 30 значит треугольник ABC равнобедренный с основанием AC. CB = AB = 8. Пусть BD высота, она же медиана.
<DBA = 120 / 2 = 60. AD = AB * sin<DBA = 8* /2 = 4
AC = 2AD = 8
2) BC = AC * sinA / sinB
S = AC * BC * sinC / 2 = 20* 20 * sin113 * sin53 / sin14
3) AC =
так как все стороный найдены можно подставить их значения в формулы:
<A = Arccos( (AC^2 + AB^2 -BC^2)/2AC*AB )
<B = Arccos( (BC^2 + AB^2 -AC^2)/2BC*AB )
Если нужно найти приближенное целочисленное значение нужно подставить и посчитать на калькуляторе
Пирамида
Пирамидой называется многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников с общей вершиной, называемых боковыми гранями пирамиды. Пирамида называется n-угольной, если ее основанием является n-угольник.
Пирамида называется правильной, если её основание — правильный многоугольник и все боковые ребра равны.
Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.
Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Усечённая пирамида называется правильной, если пирамида, из которой она была получена — правильная.
Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие в
Объяснение: