Через 2 прямые МР и НО можно провести плоскость, препендикулярную заданной. В этой плоскости МНРО - трапеция, с основаниями НО = 12, МР = 24, и боковой стороной, перпендикулярной основаниям (это в условии задано, что МР и НО препендикулярны плоскости, а РО как раз лежит в этой плоскости, потому что точки Р и О лежат в ней :. Эта боковая сторона РО = 5. Надо найти вторую, так сказать, наклонную боковую сторону трапеции. Как это делается, ясно из следующего соотношения
Из за того, что один из отрезков равен радиусу, угол треугольника с вершиной в конце этого отрезка - прямой (там получается ромб из 2 отрезков касательных и из 2 радиусов, ясно что это квадрат, поскольку углы между касательными и радиусами в точки касания прямые).
Для прямоугольного треугольника стороны a = 4 + 5 = 9; b = x + 4; c = x + 5; связаны теоремой Пифагора. (x - единственный неизвестный из отрезков, на которые точки касания вписанной окружности делят стороны)
(x + 4)^2 + 9^2 = (x + 5)^2;
4^2 + 9^2 - 5^2 = 2*x;
x = 36;
Стороны 9, 40, 41, это известная Пифагорова тройка (наподобие 3,4,5 или 5,12,13)
Через 2 прямые МР и НО можно провести плоскость, препендикулярную заданной. В этой плоскости МНРО - трапеция, с основаниями НО = 12, МР = 24, и боковой стороной, перпендикулярной основаниям (это в условии задано, что МР и НО препендикулярны плоскости, а РО как раз лежит в этой плоскости, потому что точки Р и О лежат в ней :. Эта боковая сторона РО = 5. Надо найти вторую, так сказать, наклонную боковую сторону трапеции. Как это делается, ясно из следующего соотношения
МН^2 = (МР - НО)^2 + РО^2;
МН^2 = (24 - 12)^2 + 5^2;
МН =13
Из за того, что один из отрезков равен радиусу, угол треугольника с вершиной в конце этого отрезка - прямой (там получается ромб из 2 отрезков касательных и из 2 радиусов, ясно что это квадрат, поскольку углы между касательными и радиусами в точки касания прямые).
Для прямоугольного треугольника стороны a = 4 + 5 = 9; b = x + 4; c = x + 5; связаны теоремой Пифагора. (x - единственный неизвестный из отрезков, на которые точки касания вписанной окружности делят стороны)
(x + 4)^2 + 9^2 = (x + 5)^2;
4^2 + 9^2 - 5^2 = 2*x;
x = 36;
Стороны 9, 40, 41, это известная Пифагорова тройка (наподобие 3,4,5 или 5,12,13)