Диагонали прямоугольника равны и угол между ними всегда острый, значит есть два варианта решения: А) Угол 47 образовывается в равнобедренном треугольнике, допустим, AOB, где O - точка пересечения диагоналей. угол OAB = угол OBA, т.к. диагонали равны и точка пересечения делит их пополам, значит AOB = 180-47*2 = 86 B) Существует так же угол, образовываемый пересечением двух диагоналей, он смежен углу 86. 180-86 = 94. Так же его можно найти с но взять угол 43, образовываемый так же диагональю (90-47), решение аналогичное (180-43*2)
Объяснение:
1. 2, 3
1) ∠PBK и ∠MBL-смежные.
Нет, они вертикальные
2) ∠PBL и ∠MBK-вертикальнвые.
Да, они верикальные, т.к. продолжение сторон одного угла является стороной другого
3) ∠MBK-острый угол.
Да, ∠PBL=∠MBK=72°
72°<90°
4) ∠MBL-прямой угол.
Нет, ∠PBL и ∠MBL-смежные
∠MBL=180°-72°=108°
108°>90°, угол тупой
2. 52°
MA-биссектриса угла, следовательно, она делит угол на две равные части:
∠KMA=∠AML=104°/2=52°
3. ∠DCE=124°
∠DCE и ∠FCE смежные=>∠DCE=180°-56°=124°
4. DC=7см; CF=14см
FD=DC+CF
FD=DC+CF
DC-x
CF-2x
x+2x=21
3x=21
x=7
DC=7 см
CF=14 см
5. ∠NMK=48°
∠KMN=∠OMN-∠OMK=78-30=48°
А) Угол 47 образовывается в равнобедренном треугольнике, допустим, AOB, где O - точка пересечения диагоналей. угол OAB = угол OBA, т.к. диагонали равны и точка пересечения делит их пополам, значит AOB = 180-47*2 = 86
B) Существует так же угол, образовываемый пересечением двух диагоналей, он смежен углу 86. 180-86 = 94. Так же его можно найти с но взять угол 43, образовываемый так же диагональю (90-47), решение аналогичное (180-43*2)