Эти задачи для устного счета. Если заданы апофема и высота, то нам сразу известен радиус вписанной в основание окружности, r^2 = 10^2 - 8^2 = 6^2; r = 6;
Кроме того, нам известен косинус двугранного уголла между любой гранью и основанием, он равен 6/10 = 3/5;
Высота основания (это равносторонний треугольник) в 3 раза больше, чем r, то есть 18. Боковая сторона равна 18/(корень(3)/2) = 12*корень(3); площадь основания 12*корень(3)*18/2 = 108*корень(3);
Можно теперь честно вычислить боковую поверхность, умножая апофему на сторону основания, потом деля пополам, и результат утроить (грани три);
Но резутьтат получится такой же, как если площадь основания поделить на косинус дувугранного угла между любой гранью и основанием, то есть на 3/5.
Общая площадь будет (1 + 5/3)*108*корень(3) = 288*корень(3);
По моему, 288 не слишком похоже на 468, но это правильный ответ.
Хотите, можно и так посчитать. r = 6; значит половина боковой стороны 6*ctg(30) = 6*корень(3); сторона 12*корень(3), периметр 36*корень(3), площадь 6*36*корень(3)/2 = 108*корень(3). Опять тот же результат
Боковая грань - основание 12*корень(3), высота 10, площадь 12**корень(3)*10/2 = 60**корень(3), граней 3, всего 180*корень(3); складываем и опять получаем то же самое Хотите, еще счета расскажу? и все дадут правильный результат, а не тот, который вы хотите получить :
Прямоугольный треугольник имеет один угол = 90 °, а два других угла являются острыми. Допустим, что меньший из этих двух острых уголов =Х °. Поскольку по условию задачи сказано, что один из острых углов на 50% больше второго, значит второй угол в 2 раза больше первого (поскольку 50% величины это половина от 100%) и этот второй острый угол =2Х°. Сума всех углов любого треугольника =180° Значит сума углов нашего треугольника =180° Выходит, х+2х+90°=180° 3х=180°-90° 3х=90° х=30° - величина первого острого угла. Значит величина второго острого угла = 2Х°=2*30°=60°
ответ: острые угли прямоугольного треугольника равны 30° и 60°
Эти задачи для устного счета. Если заданы апофема и высота, то нам сразу известен радиус вписанной в основание окружности, r^2 = 10^2 - 8^2 = 6^2; r = 6;
Кроме того, нам известен косинус двугранного уголла между любой гранью и основанием, он равен 6/10 = 3/5;
Высота основания (это равносторонний треугольник) в 3 раза больше, чем r, то есть 18. Боковая сторона равна 18/(корень(3)/2) = 12*корень(3); площадь основания 12*корень(3)*18/2 = 108*корень(3);
Можно теперь честно вычислить боковую поверхность, умножая апофему на сторону основания, потом деля пополам, и результат утроить (грани три);
Но резутьтат получится такой же, как если площадь основания поделить на косинус дувугранного угла между любой гранью и основанием, то есть на 3/5.
Общая площадь будет (1 + 5/3)*108*корень(3) = 288*корень(3);
По моему, 288 не слишком похоже на 468, но это правильный ответ.
Хотите, можно и так посчитать. r = 6; значит половина боковой стороны 6*ctg(30) = 6*корень(3); сторона 12*корень(3), периметр 36*корень(3), площадь 6*36*корень(3)/2 = 108*корень(3). Опять тот же результат
Боковая грань - основание 12*корень(3), высота 10, площадь 12**корень(3)*10/2 = 60**корень(3), граней 3, всего 180*корень(3); складываем и опять получаем то же самое Хотите, еще счета расскажу? и все дадут правильный результат, а не тот, который вы хотите получить :
Допустим, что меньший из этих двух острых уголов =Х °.
Поскольку по условию задачи сказано, что один из острых углов на 50% больше второго, значит второй угол в 2 раза больше первого (поскольку 50% величины это половина от 100%) и этот второй острый угол =2Х°.
Сума всех углов любого треугольника =180°
Значит сума углов нашего треугольника =180°
Выходит,
х+2х+90°=180°
3х=180°-90°
3х=90°
х=30° - величина первого острого угла.
Значит величина второго острого угла = 2Х°=2*30°=60°
ответ: острые угли прямоугольного треугольника равны 30° и 60°