По определению трапеции её основания параллельны: BC||AD .
Рассмотрим треугольники BOC и DOA:
1) Угол BCO равен углу OAD ( как накрест лежащие при пересечении параллельных прямых BC и AD секущей AC )
2) Угол CBO равен углу ODA ( как накрест лежащие при пересечении параллельных прямых BC и AD секущей BD )
Следовательно, треугольники BOC и DOA подобны.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
k (коэф. подобия) равен отношению сходственных сторон подобных треугольников =>
1)
Площадь осевого сечения цилиндра равна произведению высоты цилиндра на его диаметр. 2)
Площадь сечения, параллельного осевому - произведение высоты цилиндра на хорду, являющуюся второй стороной прямоугольника ( сечения цилиндра)3)
Площадь перпендикуляного к к оси цилиндра сечения - это площадь, равная основаниям цилиндра. Она находится по формуле S=πr²В задачах нередко эти величины не даны в условии.
Их приходится выводить из других, которые даны по условию задачи.
Например, радиус ( диаметр)- из площади основания, высоту - из площади боковой поверхности и радиуса и т.д.
По определению трапеции её основания параллельны: BC||AD .
Рассмотрим треугольники BOC и DOA:
1) Угол BCO равен углу OAD ( как накрест лежащие при пересечении параллельных прямых BC и AD секущей AC )
2) Угол CBO равен углу ODA ( как накрест лежащие при пересечении параллельных прямых BC и AD секущей BD )
Следовательно, треугольники BOC и DOA подобны.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
k (коэф. подобия) равен отношению сходственных сторон подобных треугольников =>
1)
Площадь осевого сечения цилиндра равна произведению высоты цилиндра на его диаметр.
2)
Площадь сечения, параллельного осевому - произведение высоты цилиндра на хорду, являющуюся второй стороной прямоугольника ( сечения цилиндра)
3)
Площадь перпендикуляного к к оси цилиндра сечения - это площадь, равная основаниям цилиндра. Она находится по формуле S=πr²
В задачах нередко эти величины не даны в условии.
Их приходится выводить из других, которые даны по условию задачи.
Например, радиус ( диаметр)- из площади основания, высоту - из площади боковой поверхности и радиуса и т.д.