Правильный шестиугольник, лежащий в основании можно разбить на 6 равных правильных треугольников. В каждом таком треугольнике высота будет равна h = 12·sin 60° = 12· 0.5√3 = 6√3. угол между боковой гранью пирамиды и рснрванием - есть угол между апофемой А боковой грани и высотой h основания. Апофема, высота hи высота пирамиды Н образуют прямоугольный треугольник с гипотенузой А. Поскольку угол между А и h равен 45 градусам, то и угол между А и Н тоже равен 45 градусам, и рассматриваемый треугольник равнобедренный, его катеты равны: Н = h = 6√3
Найдём площадь основания, состоящую из 6 одинаковых правильных треугольников со стороной а = 12 и высотой h = 6√3 Sосно = 6(0,5а·h) = 6·0.5·12·6√3 = 216√3
Объём пирамиды V = 1/3 Sосн · Н = 1/3 · 216√3 · 6√3 = 1296 ответ: Объём пирамиды равен 1296
можно рассмотреть ΔАВD --- часть 4-угольника)))
он состоит из двух треугольников, с общей высотой)))
значит площади S(АВО) : S(ADO) = BO:DO = 3:5 ---относятся как основания)))
S(ABO) = (3/5)*S(ADO)
аналогично: 9*S(ABO) = 4*S(CBO)
S(CBO) = (9/4)*S(ABO) = (27/20)*S(ADO)
точно так же: 5*S(CBO) = 3*S(CDO)
S(CDO) = (5/3)*S(CBO) = (9/4)*S(ADO)
S(ABCD) = S(ADO) + S(ABO) + S(BCO) + S(CDO) =
= S(ADO)*(1 + (3/5) + (27/20) + (9/4)) =
= (104/20)*S(ADO) = (26/5)*S(ADO)
S(ADO) = (5/26)*S(ABCD) = 5*52/26 = 5*2 = 10
В каждом таком треугольнике высота будет равна
h = 12·sin 60° = 12· 0.5√3 = 6√3.
угол между боковой гранью пирамиды и рснрванием - есть угол между апофемой А боковой грани и высотой h основания.
Апофема, высота hи высота пирамиды Н образуют прямоугольный треугольник с гипотенузой А. Поскольку угол между А и h равен 45 градусам, то и угол между А и Н тоже равен 45 градусам, и рассматриваемый треугольник равнобедренный, его катеты равны: Н = h = 6√3
Найдём площадь основания, состоящую из 6 одинаковых правильных треугольников со стороной а = 12 и высотой h = 6√3
Sосно = 6(0,5а·h) = 6·0.5·12·6√3 = 216√3
Объём пирамиды
V = 1/3 Sосн · Н = 1/3 · 216√3 · 6√3 = 1296
ответ: Объём пирамиды равен 1296