Из за того, что один из отрезков равен радиусу, угол треугольника с вершиной в конце этого отрезка - прямой (там получается ромб из 2 отрезков касательных и из 2 радиусов, ясно что это квадрат, поскольку углы между касательными и радиусами в точки касания прямые).
Для прямоугольного треугольника стороны a = 4 + 5 = 9; b = x + 4; c = x + 5; связаны теоремой Пифагора. (x - единственный неизвестный из отрезков, на которые точки касания вписанной окружности делят стороны)
(x + 4)^2 + 9^2 = (x + 5)^2;
4^2 + 9^2 - 5^2 = 2*x;
x = 36;
Стороны 9, 40, 41, это известная Пифагорова тройка (наподобие 3,4,5 или 5,12,13)
Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
Из за того, что один из отрезков равен радиусу, угол треугольника с вершиной в конце этого отрезка - прямой (там получается ромб из 2 отрезков касательных и из 2 радиусов, ясно что это квадрат, поскольку углы между касательными и радиусами в точки касания прямые).
Для прямоугольного треугольника стороны a = 4 + 5 = 9; b = x + 4; c = x + 5; связаны теоремой Пифагора. (x - единственный неизвестный из отрезков, на которые точки касания вписанной окружности делят стороны)
(x + 4)^2 + 9^2 = (x + 5)^2;
4^2 + 9^2 - 5^2 = 2*x;
x = 36;
Стороны 9, 40, 41, это известная Пифагорова тройка (наподобие 3,4,5 или 5,12,13)
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.