1) ребро вс тетраэдра авсd перпендикулярно к плоскости авd. bc=12 в треугольнике авd угол в - прямой, угол а равен 30 градусов, ad=14. какие из следующих утверждений являются верными? 1. плоскость всd перпендикулярна к плоскости авd 2. расстояние от точки d до плоскости аbc равно 7 3. расстояние от точки a до прямой cd равно 14 4. тангенс угла между плоскостью авd и плоскостью cbd равен 0 2) ребро мс тетраэдра авсм перпендикулярно к плоскости авс, мс=12. в треугольнике авс угол с - прямой, угол а равен 30 градусов, ав=18. какие из следующих утверждений являются верными? 1. плоскость всм перпендикулярна к плоскости авс 2. расстояние от точки в до плоскости асм равно 9 3. расстояние от точки м до прямой ав равно ам 4. котангенс угла между плоскостью авс и плоскость асм равен 0,75
Таким же образом, используя формулу для площади треугольника, можно доказать и теорему о биссектрисе внутреннего угла треугольника.
Теорема (о биссектрисе внутреннего угла треугольника).
Если AA1 ¾ биссектриса угла A треугольника ABC, то
BA1 : A1 C = BA : AC.
Доказательство. Пусть угол при вершине A в треугольнике ABC равен 2a. Рассмотрим треугольники BAA1 и CAA1 (см. рис.). Их площади относятся как отрезки BA1 и A1C, поскольку высота к этим сторонам в рассматриваемых треугольниках общая.
2
Свойства Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана и высота, проведенные к основанию совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии. Углы, противолежащие равным сторонам, всегда острые (следует из их равенства). Признаки Два угла треугольника равны. Высота совпадает с медианой. Высота совпадает с биссектрисой. Биссектриса совпадает с медианой.
Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, — соответствующие углы, R — радиус описанной окружности, r — радиус вписанной окружности.
1) ребро вс тетраэдра авсd перпендикулярно к плоскости авd. bc=12 в треугольнике авd угол в - прямой, угол а равен 30 градусов, ad=14. какие из следующих утверждений являются верными? 1. плоскость всd перпендикулярна к плоскости авd 2. расстояние от точки d до плоскости аbc равно 7 3. расстояние от точки a до прямой cd равно 14 4. тангенс угла между плоскостью авd и плоскостью cbd равен 0 2) ребро мс тетраэдра авсм перпендикулярно к плоскости авс, мс=12. в треугольнике авс угол с - прямой, угол а равен 30 градусов, ав=18. какие из следующих утверждений являются верными? 1. плоскость всм перпендикулярна к плоскости авс 2. расстояние от точки в до плоскости асм равно 9 3. расстояние от точки м до прямой ав равно ам 4. котангенс угла между плоскостью авс и плоскость асм равен 0,75
1
Таким же образом, используя формулу для площади треугольника, можно доказать и теорему о биссектрисе внутреннего угла треугольника.
Теорема (о биссектрисе внутреннего угла треугольника).Если AA1 ¾ биссектриса угла A треугольника ABC, то
BA1 : A1 C = BA : AC.
Доказательство. Пусть угол при вершине A в треугольнике ABC равен 2a. Рассмотрим треугольники BAA1 и CAA1 (см. рис.). Их площади относятся как отрезки BA1 и A1C, поскольку высота к этим сторонам в рассматриваемых треугольниках общая.
2
Свойства Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана и высота, проведенные к основанию совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии. Углы, противолежащие равным сторонам, всегда острые (следует из их равенства). Признаки Два угла треугольника равны. Высота совпадает с медианой. Высота совпадает с биссектрисой. Биссектриса совпадает с медианой.Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, — соответствующие углы, R — радиус описанной окружности, r — радиус вписанной окружности.