Также хочу отметить, так как нам дан равнобедренный треугольник, то углы при основании равны.
Найдём сумму углов при основании:
Угол В+угол G=180°-99°=81°
Найдём отдельно углы при основании:
Угол В=углу G=81°:2=40,5°
2. Сумма углов треугольника равна 180°
Нам дан также равнобедренный треугольник, значит углы при основании равны. Угол 1=58°, он лежит на основании. Угол 2 тоже лежит при основании, значит Угол 1=углу 2=58°
Объяснение:
1. Сумма углов треугольника равна 180°
Также хочу отметить, так как нам дан равнобедренный треугольник, то углы при основании равны.
Найдём сумму углов при основании:
Угол В+угол G=180°-99°=81°
Найдём отдельно углы при основании:
Угол В=углу G=81°:2=40,5°
2. Сумма углов треугольника равна 180°
Нам дан также равнобедренный треугольник, значит углы при основании равны. Угол 1=58°, он лежит на основании. Угол 2 тоже лежит при основании, значит Угол 1=углу 2=58°
Найдём угол 3 при вершине:
Угол 3=180°-(58°+58°)=64°
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.