Проведем в тр. АВС биссектрисы углов А и В: АК и ВМ. О - точка пересечения биссектрис.. Пусть угол, смежный углу С - х., а острый угол между биссектрисами: ВОК = АОМ = а.
Найдем углы 4-угольника МОКС:
По свойству внешнего угла тр-ка:
ОКС = а + В/2 (внешний к тр. ВОК)
ОМС = а + А/2 (внешний к тр. АОК)
МОК = 180-а (смежный с углом а)
Еще пригодится соотношение между углами А и В и а:
а = А/2 + В/2 (внешний к тр. АОВ) (1)
Итак угол МСК 4-ника МОКС, с одной стороны равен 180 - х (как смежный углу х), с другой стороны: МСК = 360 - (ОКС+ОМС+МОК) ( так как сумма всех углов выпуклого 4-ника равна 360 гр). Получим уравнение:
Соединим точку с концами диаметра. Получим прямоугольный треугольник с меньшим катетом 30 см. Примем проекцию хорды на диаметр за х.
Радиус будет тогда х+7.
Высота делит треугольник на два,тоже прямоугольных. В прямоугольном треугольнике справедливы следующие соотношения: 1) h² = a₁· b₁; 2) b² = b₁ · c; 3) a² = a₁ · c, где b₁ и a₁ - проекции катетов b и a на гипотенузу с Применим первое отошение и приравняем его к квадрату высоты из треугольника с хордой и ее проекциея. h²=x(x+14)
h²=30²-x²
x(x+14)=30²-x²
x²+14х=900 -x² 2x²+14х-900=0 x²+7х-450=0 Решаем уравнение через дискриминант. D = 1849 √D = 43 Уравнение имеет 2 корня.
Проведем в тр. АВС биссектрисы углов А и В: АК и ВМ. О - точка пересечения биссектрис.. Пусть угол, смежный углу С - х., а острый угол между биссектрисами: ВОК = АОМ = а.
Найдем углы 4-угольника МОКС:
По свойству внешнего угла тр-ка:
ОКС = а + В/2 (внешний к тр. ВОК)
ОМС = а + А/2 (внешний к тр. АОК)
МОК = 180-а (смежный с углом а)
Еще пригодится соотношение между углами А и В и а:
а = А/2 + В/2 (внешний к тр. АОВ) (1)
Итак угол МСК 4-ника МОКС, с одной стороны равен 180 - х (как смежный углу х), с другой стороны: МСК = 360 - (ОКС+ОМС+МОК) ( так как сумма всех углов выпуклого 4-ника равна 360 гр). Получим уравнение:
360-(а+В/2+а+А/2+180-а) = 180-х
180 - а - (А+В)/2 = 180 - х
И с учетом (1) получим:
-2а = -х
х = 2а, что и требовалось доказать
Соединим точку с концами диаметра. Получим прямоугольный треугольник с меньшим катетом 30 см.
Примем проекцию хорды на диаметр за х.
Радиус будет тогда х+7.
Высота делит треугольник на два,тоже прямоугольных.
В прямоугольном треугольнике справедливы следующие соотношения:
1) h² = a₁· b₁;
2) b² = b₁ · c;
3) a² = a₁ · c,
где b₁ и a₁ - проекции катетов b и a на гипотенузу с
Применим первое отошение и приравняем его к квадрату высоты из треугольника с хордой и ее проекциея.
h²=x(x+14)
h²=30²-x²
x(x+14)=30²-x²
x²+14х=900 -x²
2x²+14х-900=0
x²+7х-450=0
Решаем уравнение через дискриминант.
D = 1849
√D = 43
Уравнение имеет 2 корня.
x 1=18,
x 2= -25 ( не подходит).
Радиус окружности равен
18+7=25 см