Если построить окружность по трем точкам К, М и С, то точка А неизбежно попадет на неё. В самом деле, предположив, что это не так, и рассматривая углы КАС и КА1С (А1 - точка пересечения АС с окружностью, проходящей через К, М, С), можно увидеть, что в треугольнике АА1К внешний угол равен внутреннему, поскольку
угол КА1С = 180 - угол КМС и угол КАС = 180 - угол КМС (это задано в условии).
Поэтому точка А может лежать только на построенной окружности. То есть вокруг АКМС можно описать окружность.
Если провести в четырехугольнике АКМС диагнонали АМ и КС, то
Угол ВКМ = угол КАМ + угол КМА = угол КСМ + КСА = угол ВСА (углы КАМ и КСМ - вписанные, опираются на дугу АК описанной окружности вокруг АКМС, то есть они равны, аналогично углы КМА и КСА вписанные, опираются на дугу КА, поэтому и они равны).
Теперь видно, что в треугольниках АВС и ВКМ угол В общий, а угол ВКМ = угол ВСА, то есть эти треугольники подобны.
При этому ВК (в тр-ке ВКМ) соответствует ВС (в тр-ке АВС), а ВМ соответствует АВ.
а) следует непосредственно из подобия треугольников АВС и ВКМ.
б) из условия следует, что площадь тр-ка ВКМ составляет 1/9 от площади тр-ка АВС. Поэтому соответственные стороны этих подобных треугольников отсносятся как 1/3. То есть АВ/ВМ = 3
"Средняя" сторона пусть равна а, меньшая а - d, большая а + d.
Правильный треугольник такого же периметра имеет все стороны а, то есть его площадь равна a^2*√3/4. Площадь исходного треугольника равна 3/5 этой площади, то есть S = a^2*3√3/20;
Если построить окружность по трем точкам К, М и С, то точка А неизбежно попадет на неё. В самом деле, предположив, что это не так, и рассматривая углы КАС и КА1С (А1 - точка пересечения АС с окружностью, проходящей через К, М, С), можно увидеть, что в треугольнике АА1К внешний угол равен внутреннему, поскольку
угол КА1С = 180 - угол КМС и угол КАС = 180 - угол КМС (это задано в условии).
Поэтому точка А может лежать только на построенной окружности. То есть вокруг АКМС можно описать окружность.
Если провести в четырехугольнике АКМС диагнонали АМ и КС, то
Угол ВКМ = угол КАМ + угол КМА = угол КСМ + КСА = угол ВСА (углы КАМ и КСМ - вписанные, опираются на дугу АК описанной окружности вокруг АКМС, то есть они равны, аналогично углы КМА и КСА вписанные, опираются на дугу КА, поэтому и они равны).
Теперь видно, что в треугольниках АВС и ВКМ угол В общий, а угол ВКМ = угол ВСА, то есть эти треугольники подобны.
При этому ВК (в тр-ке ВКМ) соответствует ВС (в тр-ке АВС), а ВМ соответствует АВ.
а) следует непосредственно из подобия треугольников АВС и ВКМ.
б) из условия следует, что площадь тр-ка ВКМ составляет 1/9 от площади тр-ка АВС. Поэтому соответственные стороны этих подобных треугольников отсносятся как 1/3. То есть АВ/ВМ = 3
"Средняя" сторона пусть равна а, меньшая а - d, большая а + d.
Правильный треугольник такого же периметра имеет все стороны а, то есть его площадь равна a^2*√3/4. Площадь исходного треугольника равна 3/5 этой площади, то есть S = a^2*3√3/20;
Подставляем стороны в формулу Герона
S^2 = (3*a/2)*(a/2 - d)*(a/2)*(a/2 + d) = (3*a^2/4)*(a^2/4 - d^2);
Получается соотношение
(a^2*3√3/20)^2 = (3*a^2/4)*(a^2/4 - d^2);
a^4*27/400 = (3*a^2/4)*(a^2/4 - d^2);
a^2*9/100 = a^2/4 - d^2;
16a^2/100 = d^2;
a*2/5 = d;
Поэтому стороны равны
a*3/5; a; a*7/5; их отношение можно записать так 3:5:7;