Развернутый ∠ АОВ содержит половину градусной меры окружности и равен 180°. ∠АВN - вписанный и опирается на дугу АN, равную 2∠ABN=72° ∠NMB также вписанный и опирается на дугу NB Дуга NB=AOB-NА=180°-72°=108° ∠NMB равен половине дуги, на которую опирается, или, иначе, половине центрального угла NОB ∠NMB=108°:2=54° Замечу, что при любом местоположении вершины угла NMB пр ту же сторону диаметра (например, в точке М1 или М2) он будет опираться на дугу, равную 108° и будет равен половине ее градусной меры, т.е. 54°
1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
∠АВN - вписанный и опирается на дугу АN, равную 2∠ABN=72°
∠NMB также вписанный и опирается на дугу NB
Дуга NB=AOB-NА=180°-72°=108°
∠NMB равен половине дуги, на которую опирается, или, иначе, половине центрального угла NОB
∠NMB=108°:2=54°
Замечу, что при любом местоположении вершины угла NMB пр ту же сторону диаметра (например, в точке М1 или М2)
он будет опираться на дугу, равную 108° и будет равен половине ее градусной меры, т.е. 54°
ХироХамаки Новичок
(решение в файле)
2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.