У нас есть треугольник, со сторонами 4, 5 и 6 проводим высоту к стороне 6 пусть эта высота делит сторону 6 на икс и игрек тогда: x+y=6, откуда x=6-y (1) пусть высота Z.высота эта делит большой треугольник на два прямоугольных: 25=y^2+z^2 16=x^2+z^2 решаем эту систему, отнимая первое от второго: 9=y^2-x^2 (2) подставляем (1) в (2) 9=12y-36 y=45/12 x=9/4 Из одного из маленьких треугольников следует: x^2+z^2=16 подставляем икс равное x=9/4, получаем z примерно равно 3,2см ответ: высота, проведенная к большей стороне данного треугольника равна 3,2 см.
Проведем диагонали АС и ВМ.
Рассмотрим образовавшийся ΔАВС ( АВ=5см; ВС=8 см; <В=120°)
по теореме косинусов:
АС^2=АВ^2 + ВС^2 - 2*АВ*ВС*cos(AC^2=5^2+8^2-2*5*8*cos(120°)
AC^2=25+64-80*(1/2)
AC^2=89-40
AC^2=49
AC=√49
AC=7 см
Рассмотрим ΔВСМ ( СМ=5см; ВС=8 см; )
<С=180°-<В (по свойству параллелограмма)
<С=180°-60°=120°
По теореме косинусов:
ВМ^2=ВС^2+СМ^2-2*ВС*СМ*cos(BM^2= 8^2+5^2-2*8*5*cos(120°)
По правилу приведения углов:
cos(120°)=cos(180°-60°)=-cos120°=(-1/2)
ВМ^2=64+25-80*(-1/2)
ВМ^2=89+40
ВМ^2=129
ВМ=√129 см
ответ: АС=7см; ВМ=√129 см
Вроде так
проводим высоту к стороне 6
пусть эта высота делит сторону 6 на икс и игрек
тогда: x+y=6, откуда x=6-y (1)
пусть высота Z.высота эта делит большой треугольник на два прямоугольных:
25=y^2+z^2
16=x^2+z^2
решаем эту систему, отнимая первое от второго:
9=y^2-x^2 (2)
подставляем (1) в (2)
9=12y-36
y=45/12
x=9/4
Из одного из маленьких треугольников следует:
x^2+z^2=16
подставляем икс равное x=9/4, получаем
z примерно равно 3,2см
ответ: высота, проведенная к большей стороне данного треугольника равна 3,2 см.