Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD.
∆АКМ ~ ∆BKD по двум углам (1).
∆АРС ~ ∆DРВ по двум углам (2).
Из (1) BD/AM=4 и BD=4AM = 2AC.
Из (2) BP/PC=2.
ВМ - медиана и по ее свойствам Sabm=Scbm.
Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc.
Sakm=Sabc*1/(2*5)=(1/10)*Sabc.
Треугольники ABP и APC - треугольники с общей высотой к стороне ВC.
Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc.
Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc.
Sabk/Skpcm=(2/5)/(7/30)=12/7.
Нахождение углов в трапеции по готовому чертежу.
Объяснение:
4)ΔАВЕ , по т. о сумме углов треугольника ∠ВЕА=180°-75°-40°=65° .
∠ВЕА=∠СВЕ=65° как накрест лежащие при ВС║АD, ВЕ-секущая , поэтому ∠АВС=75°+65°=140°.
По т. о внешнем угле для ΔАВЕ , ∠ВЕD=40°+75°=115°
АВСD -параллелограмм и противоположные углы в нем равны⇒ ∠ВСD=115°. Тогда на последний угол ∠D=360°-40°-140°-115°=65°
5) Пусть ∠САD=x, тогда ∠АСВ=х как накрест лежащий при ВС║АD, АС-секущая.
ΔАВС-равнобедренный ⇒∠ВАС=∠АСВ=х ⇒∠ВАD=2х ⇒∠D=2x т.к трапеция равнобедренная .
ΔАСD-прямоугольный, по свойству острых углов ∠САD+∠D=90° или х+2х=90° , х=30°.
Углы трапеции равны ∠D=∠A=60° , ∠BCD=90°+30°=120° , ∠ABC=120°